IDEAS home Printed from https://ideas.repec.org/a/ids/ijmefi/v1y2008i2p121-148.html
   My bibliography  Save this article

Predictive performance of conditional Extreme Value Theory in Value-at-Risk estimation

Author

Listed:
  • Ahmed Ghorbel
  • Abdelwahed Trabelsi

Abstract

This paper conducts a comparative evaluation of the predictive performance of various Value-at-Risk (VaR) models. Special emphasis is paid to two methodologies related to the Extreme Value Theory (EVT): The Peaks Over Threshold (POT) and the Block Maxima (BM). We apply both unconditional and conditional EVT models to management of extreme market risks in stock markets. They are applied on daily returns of the BVMT and CAC 40 indices with the intention to compare the performance of various estimation methods on markets with different capitalisation and trading practices. The results we report demonstrate that conditional POT EVT method produces the most accurate forecasts of extreme losses both for standard and more extreme VaR quantiles. The conditional block maxima EVT method is less accurate.

Suggested Citation

  • Ahmed Ghorbel & Abdelwahed Trabelsi, 2008. "Predictive performance of conditional Extreme Value Theory in Value-at-Risk estimation," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 1(2), pages 121-148.
  • Handle: RePEc:ids:ijmefi:v:1:y:2008:i:2:p:121-148
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=19218
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
    2. Karmakar, Madhusudan, 2013. "Estimation of tail-related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, Elsevier, vol. 22(3), pages 79-85.
    3. Karmakar, Madhusudan & Shukla, Girja K., 2015. "Managing extreme risk in some major stock markets: An extreme value approach," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 1-25.
    4. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
    5. Samit Paul & Madhusudan Karmakar, 2017. "Relative Efficiency of Component GARCH-EVT Approach in Managing Intraday Market Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 21(4), pages 247-283, December.
    6. Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
    7. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    8. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
    9. Aditya Banerjee & Samit Paul, 2024. "Idiosyncrasies of Intraday Risk in Emerging and Developed Markets: Efficacy of the MCS-GARCH Model and Extreme Value Theory," Global Business Review, International Management Institute, vol. 25(2), pages 468-490, April.
    10. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
    11. Madhusudan Karmakar, 2013. "Estimation of tail‐related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 79-85, September.
    12. Jolanta Tamošaitienė & Vahidreza Yousefi & Hamed Tabasi, 2021. "Project Portfolio Construction Using Extreme Value Theory," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    13. Ra l de Jes s-Guti rrez & Roberto J. Santill n-Salgado, 2019. "Conditional Extreme Values Theory and Tail-related Risk Measures: Evidence from Latin American Stock Markets," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 127-141.
    14. Ourir, Awatef & Snoussi, Wafa, 2012. "Markets liquidity risk under extremal dependence: Analysis with VaRs methods," Economic Modelling, Elsevier, vol. 29(5), pages 1830-1836.
    15. Hamed Tabasi & Vahidreza Yousefi & Jolanta Tamošaitienė & Foroogh Ghasemi, 2019. "Estimating Conditional Value at Risk in the Tehran Stock Exchange Based on the Extreme Value Theory Using GARCH Models," Administrative Sciences, MDPI, vol. 9(2), pages 1-17, May.
    16. Araújo Santos, P. & Fraga Alves, M.I., 2013. "Forecasting Value-at-Risk with a duration-based POT method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 295-309.
    17. Harish Kamal & Samit Paul, 2024. "Liquidity‐adjusted value‐at‐risk using extreme value theory and copula approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1747-1769, September.
    18. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmefi:v:1:y:2008:i:2:p:121-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=218 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.