IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v29y2012i5p1830-1836.html
   My bibliography  Save this article

Markets liquidity risk under extremal dependence: Analysis with VaRs methods

Author

Listed:
  • Ourir, Awatef
  • Snoussi, Wafa

Abstract

Value-at-Risk (VaR) is a widely used tool for assessing financial market risk. In practice, the estimation of liquidity extreme risk by VaR generally uses models assuming independence of bid–ask spreads. However, bid–ask spreads tend to occur in clusters with time dependency, particularly during crisis period. Our paper attempts to fill this gap by studying the impact of negligence of dependency in liquidity extreme risk assessment of Tunisian stock market. The main methods which take into account returns dependency to assess market risk is Time series–Extreme Value Theory combination. Therefore we compare VaRs estimated under independency (Variance–Covariance Approach, Historical Simulation and the VaR adjusted to extreme values) relatively to the VaR when dependence is considered. The efficiency of those methods was tested and compared using the backtesting tests. The results confirm the adequacy of the recent extensions of liquidity risk in the VaR estimation. Therefore, we prove a performance improvement of VaR estimates under the assumption of dependency across a significant reduction of the estimation error, particularly with AR (1)-GARCH (1,1)-GPD model.

Suggested Citation

  • Ourir, Awatef & Snoussi, Wafa, 2012. "Markets liquidity risk under extremal dependence: Analysis with VaRs methods," Economic Modelling, Elsevier, vol. 29(5), pages 1830-1836.
  • Handle: RePEc:eee:ecmode:v:29:y:2012:i:5:p:1830-1836
    DOI: 10.1016/j.econmod.2012.05.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026499931200171X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2012.05.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel, L., 2007. "Implication des investisseurs étrangers sur les marchés obligataires locaux des pays émergents7," Bulletin de la Banque de France, Banque de France, issue 166, pages 29-39.
    2. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    3. Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Masson, Paul, 1999. "Contagion:: macroeconomic models with multiple equilibria," Journal of International Money and Finance, Elsevier, vol. 18(4), pages 587-602, August.
    6. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    7. Amihud, Yakov & Mendelson, Haim, 1986. "Asset pricing and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 17(2), pages 223-249, December.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    10. François Longin, 1998. "Value at Risk : Une nouvelle approche fondée sur les valeurs extrêmes," Annals of Economics and Statistics, GENES, issue 52, pages 23-51.
    11. Harris, L., 1990. "Liquidity , Trading Rules and Electronic Trading Systems ," Papers 91-8, Southern California - School of Business Administration.
    12. repec:bla:jfinan:v:44:y:1989:i:1:p:115-34 is not listed on IDEAS
    13. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    14. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    15. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    16. repec:adr:anecst:y:1998:i:52:p:02 is not listed on IDEAS
    17. Aymen BEN REJEB & Ousama BEN SALHA & Jaleleddine BEN REJEB, 2012. "Value-at-Risk Analysis for the Tunisian Currency Market: A Comparative Study," International Journal of Economics and Financial Issues, Econjournals, vol. 2(2), pages 110-125.
    18. Ahmed Ghorbel & Abdelwahed Trabelsi, 2008. "Predictive performance of conditional Extreme Value Theory in Value-at-Risk estimation," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 1(2), pages 121-148.
    19. Hisata, Yoshifumi & Yamai, Yasuhiro, 2000. "Research toward the Practical Application of Liquidity Risk Evaluation Methods," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 18(2), pages 83-127, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Czauderna, Katrin & Riedel, Christoph & Wagner, Niklas, 2015. "Liquidity and conditional market returns: Evidence from German exchange traded funds," Economic Modelling, Elsevier, vol. 51(C), pages 454-459.
    2. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
    3. Chui-Chun Tsai & Tsun-Siou Lee, 2017. "Liquidity-Adjusted Value-at-Risk for TWSE Leverage/ Inverse ETFs: A Hellinger Distance Measure Research," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 13(1), pages 53-81, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    2. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    3. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    4. Medina, Vicente & Pardo, Ángel & Pascual, Roberto, 2014. "The timeline of trading frictions in the European carbon market," Energy Economics, Elsevier, vol. 42(C), pages 378-394.
    5. William J. Breen & Laurie Simon Hodrick & Robert A. Korajczyk, 2002. "Predicting Equity Liquidity," Management Science, INFORMS, vol. 48(4), pages 470-483, April.
    6. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
    7. Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
    8. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    9. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    10. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    11. Lamoureux, Christopher G. & Wang, Qin, 2015. "Measuring private information in a specialist market," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 92-119.
    12. Flannery, Mark J. & Kwan, Simon H. & Nimalendran, M., 2004. "Market evidence on the opaqueness of banking firms' assets," Journal of Financial Economics, Elsevier, vol. 71(3), pages 419-460, March.
    13. Vayanos, Dimitri & Wang, Jiang, 2009. "Liquidity and asset prices: a united framework," LSE Research Online Documents on Economics 29303, London School of Economics and Political Science, LSE Library.
    14. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    15. Luca Erzegovesi, 2002. "VaR and Liquidity Risk.Impact on Market Behaviour and Measurement Issues," Alea Tech Reports 014, Department of Computer and Management Sciences, University of Trento, Italy, revised 14 Jun 2008.
    16. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    17. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    18. Pascual, Roberto, 2000. "Adverse selection costs, trading activity and liquidity in the NYSE: an empirical analysis in a dynamic context," UC3M Working papers. Economics 7276, Universidad Carlos III de Madrid. Departamento de Economía.
    19. de Jong, F.C.J.M. & Driessen, J.J.A.G., 2015. "Can large long-term investors capture illiquidity premiums," Other publications TiSEM 9c92b978-0099-44d3-9aab-8, Tilburg University, School of Economics and Management.
    20. Hagströmer, Björn & Anderson, Richard G. & Binner, Jane & Nilsson, Birger, 2009. "Dynamics in Systematic Liquidity," Working Papers 2009:7, Lund University, Department of Economics.

    More about this item

    Keywords

    Value-at-Risk; Liquidity risk; Dependency; Extreme value;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G01 - Financial Economics - - General - - - Financial Crises
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:5:p:1830-1836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.