IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v2y2008i5p122.html
   My bibliography  Save this article

Adaptive Multicut Aggregation Method for Solving Two-stage Stochastic Convex Programming with Recourse

Author

Listed:
  • Jingsheng Liu
  • Changyin Zhou
  • Xiuping Zhang

Abstract

In this paper we extend directly adaptive multicut aggregation method of Svyatoslav Trukhanov, Lewis Ntaimo and Andrew Schaefer to solving two-stage problems of stochastic convex programming. The implement of the algorithm is simple, so less computation work is needed. The algorithm has certain convergence.

Suggested Citation

  • Jingsheng Liu & Changyin Zhou & Xiuping Zhang, 2008. "Adaptive Multicut Aggregation Method for Solving Two-stage Stochastic Convex Programming with Recourse," Modern Applied Science, Canadian Center of Science and Education, vol. 2(5), pages 122-122, September.
  • Handle: RePEc:ibn:masjnl:v:2:y:2008:i:5:p:122
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/2225/2078
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/2225
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    2. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    3. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    4. Xiaotie Chen & David L. Woodruff, 2024. "Distributions and bootstrap for data-based stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    5. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    6. Kools, L. & Phillipson, F., 2016. "Data granularity and the optimal planning of distributed generation," Energy, Elsevier, vol. 112(C), pages 342-352.
    7. Peter Kall & János Mayer, 2006. "Some insights into the solution algorithms for SLP problems," Annals of Operations Research, Springer, vol. 142(1), pages 147-164, February.
    8. Ward Romeijnders & David P. Morton & Maarten H. van der Vlerk, 2017. "Assessing the Quality of Convex Approximations for Two-Stage Totally Unimodular Integer Recourse Models," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 211-231, May.
    9. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    10. Atakan, Semih & Gangammanavar, Harsha & Sen, Suvrajeet, 2022. "Towards a sustainable power grid: Stochastic hierarchical planning for high renewable integration," European Journal of Operational Research, Elsevier, vol. 302(1), pages 381-391.
    11. J. R. Birge & L. Qi & Z. Wei, 1998. "Convergence Analysis of Some Methods for Minimizing a Nonsmooth Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 357-383, May.
    12. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    13. Jesse G. Wales & Alexander J. Zolan & William T. Hamilton & Alexandra M. Newman & Michael J. Wagner, 2023. "Combining simulation and optimization to derive operating policies for a concentrating solar power plant," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 119-150, March.
    14. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    15. Trukhanov, Svyatoslav & Ntaimo, Lewis & Schaefer, Andrew, 2010. "Adaptive multicut aggregation for two-stage stochastic linear programs with recourse," European Journal of Operational Research, Elsevier, vol. 206(2), pages 395-406, October.
    16. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    17. Xiaotie Chen & David L. Woodruff, 2023. "Software for Data-Based Stochastic Programming Using Bootstrap Estimation," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1218-1224, November.
    18. Sha, Yue & Zhang, Junlong & Cao, Hui, 2021. "Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 290(3), pages 886-900.
    19. Martin Biel & Mikael Johansson, 2022. "Efficient Stochastic Programming in Julia," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1885-1902, July.
    20. Yu Fu & Amarnath Banerjee, 2021. "A Stochastic Programming Model for Service Scheduling with Uncertain Demand: an Application in Open-Access Clinic Scheduling," SN Operations Research Forum, Springer, vol. 2(3), pages 1-32, September.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:2:y:2008:i:5:p:122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.