IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921005361.html
   My bibliography  Save this article

Discrete Prabhakar fractional difference and sum operators

Author

Listed:
  • Mohammed, Pshtiwan Othman
  • Abdeljawad, Thabet
  • Hamasalh, Faraidun Kadir

Abstract

The Prabhakar fractional operator is commonly acclaimed as the queen model of fractional calculus. Our aim in this article is to introduce the notion of the discrete Prabhakar fractional operator with discrete generalized Mittag-Leffler function in the kernel, in the context of discrete fractional calculus. Also, we examine some relationships between our new model with the discrete Atangana–Baleanu fractional model implemented by Abdeljawad. By doing these relationships, we can find a few interesting properties of both, as well as of the original discrete Atangana–Baleanu fractional models and their iterated forms. We can confirm that this is the first paper introducing and studying the discrete Prabhakar fractional operators in the context of discrete fractional calculus.

Suggested Citation

  • Mohammed, Pshtiwan Othman & Abdeljawad, Thabet & Hamasalh, Faraidun Kadir, 2021. "Discrete Prabhakar fractional difference and sum operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005361
    DOI: 10.1016/j.chaos.2021.111182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    2. Abdeljawad, Thabet, 2018. "Different type kernel h−fractional differences and their fractional h−sums," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 146-156.
    3. Pshtiwan Othman Mohammed, 2019. "A Generalized Uncertain Fractional Forward Difference Equations of Riemann-Liouville Type," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(4), pages 43-50, August.
    4. Thabet Abdeljawad, 2013. "On Delta and Nabla Caputo Fractional Differences and Dual Identities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Junwei & Qian, Yongsheng & Wang, Wenhai & Xu, Dejie & Li, Haijun, 2023. "The impact of connected automated vehicles and platoons on the traffic safety and stability in complex heterogeneous traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashid, Saima & Sultana, Sobia & Hammouch, Zakia & Jarad, Fahd & Hamed, Y.S., 2021. "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Rashid, Saima & Sultana, Sobia & Jarad, Fahd & Jafari, Hossein & Hamed, Y.S., 2021. "More efficient estimates via ℏ-discrete fractional calculus theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    4. Pshtiwan Othman Mohammed & Thabet Abdeljawad & Faraidun Kadir Hamasalh, 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis," Mathematics, MDPI, vol. 9(11), pages 1-17, June.
    5. Abdalla, Bahaaeldin & Abdeljawad, Thabet, 2019. "On the oscillation of Caputo fractional differential equations with Mittag–Leffler nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 173-177.
    6. Du, Feifei & Jia, Baoguo, 2020. "Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    8. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Panda, Sumati Kumari & Vijayakumar, Velusamy & Nagy, A.M., 2023. "Complex-valued neural networks with time delays in the Lp sense: Numerical simulations and finite time stability," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    10. Abdeljawad, Thabet & Baleanu, Dumitru, 2017. "Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 106-110.
    11. Thabet Abdeljawad & Arran Fernandez, 2019. "On a New Class of Fractional Difference-Sum Operators with Discrete Mittag-Leffler Kernels," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    12. Jiraporn Reunsumrit & Thanin Sitthiwirattham, 2020. "On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations," Mathematics, MDPI, vol. 8(4), pages 1-13, March.
    13. Jarunee Soontharanon & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2019. "A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line," Mathematics, MDPI, vol. 7(3), pages 1-22, March.
    14. Khan, Hasib & Jarad, Fahd & Abdeljawad, Thabet & Khan, Aziz, 2019. "A singular ABC-fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 56-61.
    15. Suwan, Iyad & Abdeljawad, Thabet & Jarad, Fahd, 2018. "Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu differences," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 50-59.
    16. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    17. Mohammed, Pshtiwan Othman & Kürt, Cemaliye & Abdeljawad, Thabet, 2022. "Bivariate discrete Mittag-Leffler functions with associated discrete fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    18. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    19. Almusawa, Musawa Yahya & Mohammed, Pshtiwan Othman, 2023. "Approximation of sequential fractional systems of Liouville–Caputo type by discrete delta difference operators," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    20. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.