IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v8y2016i8p42.html
   My bibliography  Save this article

Potential of Cover Crops in Promoting Mycorrhizal Diversity and Soil Quality in Organic Farms

Author

Listed:
  • P. G. Soti
  • Savannah Rugg
  • Alexis Racelis

Abstract

Mycorrhizal fungi play a crucial role in agroecosystems with their ability to enhance nutrient and water uptake and aid in weeds and pest suppression. Mycorrhizal fungi have a symbiotic association with plants, one which is highly influenced by the interaction between soil and plant conditions. In this study, we analyzed the potential to increase the density and diversity of mycorrhizal fungi of using four different cover-crops- lablab (Lablab purpureus), sunn hemp (Crotalaria juncea), pearl millet (Pennisetum glaucum), and sudangrass (Sorghum drummondii). We examined changes in the density, diversity and structure of mycorrhizal fungi before and after planting the cover crops. Our results indicate that, while the diversity of mycorrhizal fungi was not influenced by the cover-crop type, different cover crops were associated with changes in the density and structure of mycorrhizal fungi. In addition, the cover-crop type also had an impact on the soil organic matter and nutrient status. Of the four we tested, sunn hempwas associated with higher rates of percent organic matter, abundance of mycorrhiza spores, and specific micronutrients, signaling multiple benefits as a warm season cover crop, especially in organic farms that aim to minimize chemical applications.

Suggested Citation

  • P. G. Soti & Savannah Rugg & Alexis Racelis, 2016. "Potential of Cover Crops in Promoting Mycorrhizal Diversity and Soil Quality in Organic Farms," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 8(8), pages 1-42, July.
  • Handle: RePEc:ibn:jasjnl:v:8:y:2016:i:8:p:42
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/59840/32941
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/59840
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    2. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    3. Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
    4. Karl S. Zimmerer & Steven J. Vanek, 2016. "Toward the Integrated Framework Analysis of Linkages among Agrobiodiversity, Livelihood Diversification, Ecological Systems, and Sustainability amid Global Change," Land, MDPI, vol. 5(2), pages 1-28, April.
    5. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    6. Snapp, Sieglinde, 2022. "Embracing variability in soils on smallholder farms: New tools and better science," Agricultural Systems, Elsevier, vol. 195(C).
    7. John Taylor & Sarah Lovell, 2014. "Urban home food gardens in the Global North: research traditions and future directions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(2), pages 285-305, June.
    8. Dominati, Estelle & Patterson, Murray & Mackay, Alec, 2010. "A framework for classifying and quantifying the natural capital and ecosystem services of soils," Ecological Economics, Elsevier, vol. 69(9), pages 1858-1868, July.
    9. Alberto Orgiazzi & Erica Lumini & R Henrik Nilsson & Mariangela Girlanda & Alfredo Vizzini & Paola Bonfante & Valeria Bianciotto, 2012. "Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    10. Mark V. Brady & Jordan Hristov & Fredrik Wilhelmsson & Katarina Hedlund, 2019. "Roadmap for Valuing Soil Ecosystem Services to Inform Multi-Level Decision-Making in Agriculture," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
    11. Fátima Gonçalves & Cristina Carlos & Luís Crespo & Vera Zina & Amália Oliveira & Juliana Salvação & José Alberto Pereira & Laura Torres, 2021. "Soil Arthropods in the Douro Demarcated Region Vineyards: General Characteristics and Ecosystem Services Provided," Sustainability, MDPI, vol. 13(14), pages 1-35, July.
    12. Foudi, Sébastien, 2012. "The role of farmers' property rights in soil ecosystem services conservation," Ecological Economics, Elsevier, vol. 83(C), pages 90-96.
    13. Giuliano Rocco Romanazzi & Giovanni Ottomano Palmisano & Marilisa Cioffi & Vincenzo Leronni & Ervin Toromani & Romina Koto & Annalisa De Boni & Claudio Acciani & Rocco Roma, 2024. "A Cost–Benefit Analysis for the Economic Evaluation of Ecosystem Services Lost Due to Erosion in a Mediterranean River Basin," Land, MDPI, vol. 13(9), pages 1-27, September.
    14. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Plaas, Elke & Meyer-Wolfarth, Friederike & Banse, Martin & Bengtsson, Jan & Bergmann, Holger & Faber, Jack & Potthoff, Martin & Runge, Tania & Schrader, Stefan & Taylor, Astrid, 2019. "Towards valuation of biodiversity in agricultural soils: A case for earthworms," Ecological Economics, Elsevier, vol. 159(C), pages 291-300.
    16. Wenyue Song & Hongqi Wu & Zequn Xiang & Yanmin Fan & Shuaishuai Wang & Jia Guo, 2024. "Effects of Plastic Mulch Residue on Soil Fungal Communities in Cotton," Agriculture, MDPI, vol. 14(8), pages 1-16, August.
    17. Senicovscaia, Irina, 2014. "Soil biota as a natural resource for the restoration of degraded chernozems," MPRA Paper 61749, University Library of Munich, Germany.
    18. Sébastien Foudi, 2012. "Exploitation of soil biota ecosystem services in agriculture: a bioeconomic approach," Working Papers 2012-02, BC3.
    19. Cong, Rong-Gang & Hedlund, Katarina & Andersson, Hans & Brady, Mark, 2014. "Managing soil natural capital: An effective strategy for mitigating future agricultural risks," MPRA Paper 112155, University Library of Munich, Germany.
    20. Robert Burdock & Peter Ampt, 2018. "The Characteristics of Five Food Production Systems and Their Implications for Sustainable Landscapes," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(2), pages 1-23, January.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:8:y:2016:i:8:p:42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.