IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v7y2015i10p281.html
   My bibliography  Save this article

Performance of Some Alfalfa Cultivars under Salinity Stress Conditions

Author

Listed:
  • A. Badran
  • Esraa ElSherebeny
  • Y. Salama

Abstract

The experiment was aimed at assessing the response of three alfalfa (Medicajo sativa L.) varieties viz., Giza 1, Al-hasawi and Siwa 1 under two salinity levels during 2012 and 2013 growing seasons. The statistical analysis revealed significant differences among varieties for various traits associated with salt tolerance under salinity stress. Regarding to stress tolerance index, the results confirm that Al-hasawi cv. and Siwa 1 cv. were found to be more tolerant of salinity than Giza 1 cv. According to correlation and path analysis, proline and chlorophyll content recorded the highest positive direct effect on dry weight per plant (1.135 and 0.693 respectively,). At biochemical level, analysis of soluble protein by SDS-PAGE revealed that percentage of polymorphic and monomorphic were 75 and 25 respectively. Also, the molecular weights of some salt responsive proteins (16.4, 29.5, 33.9 and 37 kDa) are necessary to select the tolerant varieties under salinity stress in alfalfa plant.

Suggested Citation

  • A. Badran & Esraa ElSherebeny & Y. Salama, 2015. "Performance of Some Alfalfa Cultivars under Salinity Stress Conditions," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(10), pages 281-281, September.
  • Handle: RePEc:ibn:jasjnl:v:7:y:2015:i:10:p:281
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/50956/28359
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/50956
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2003. "Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods," Agricultural Water Management, Elsevier, vol. 62(1), pages 37-66, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    2. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.
    3. Ahmed, B.A. Ould & Yamamoto, T. & Rasiah, V. & Inoue, M. & Anyoji, H., 2007. "The impact of saline water irrigation management options in a dune sand on available soil water and its salinity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 63-72, March.
    4. Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
    5. Atzori, Giulia & Guidi Nissim, Werther & Caparrotta, Stefania & Masi, Elisa & Azzarello, Elisa & Pandolfi, Camilla & Vignolini, Pamela & Gonnelli, Cristina & Mancuso, Stefano, 2016. "Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops," Agricultural Water Management, Elsevier, vol. 176(C), pages 255-262.
    6. Degen Lin & Chuanqi Hu & Fang Lian & Jing’ai Wang & Xingli Gu & Yingxian Yu, 2023. "Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion," Land, MDPI, vol. 12(11), pages 1-19, November.
    7. Katerji, N. & van Hoorn, J.W. & Hamdy, A. & Mastrorilli, M. & Fares, C. & Ceccarelli, S. & Grando, S. & Oweis, T., 2006. "Classification and salt tolerance analysis of barley varieties," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 184-192, September.
    8. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    9. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    10. Katerji, N. & Mastrorilli, M. & Lahmar, F., 2011. "FAO-56 methodology for the stress coefficient evaluation under saline environment conditions: Validation on potato and broad bean crops," Agricultural Water Management, Elsevier, vol. 98(4), pages 588-596, February.
    11. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    13. Atzori, Giulia & Nissim, Werther & Macchiavelli, Tania & Vita, Federico & Azzarello, Elisa & Pandolfi, Camilla & Masi, Elisa & Mancuso, Stefano, 2020. "Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context," Agricultural Water Management, Elsevier, vol. 240(C).
    14. Kabir, Md. Jahangir & Gaydon, Donald S. & Cramb, Rob & Roth, Christian H., 2018. "Bio-economic evaluation of cropping systems for saline coastal Bangladesh: I. Biophysical simulation in historical and future environments," Agricultural Systems, Elsevier, vol. 162(C), pages 107-122.
    15. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    16. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    17. Mădălina Trușcă & Ștefania Gâdea & Roxana Vidican & Vlad Stoian & Anamaria Vâtcă & Claudia Balint & Valentina Ancuța Stoian & Melinda Horvat & Sorin Vâtcă, 2023. "Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    18. Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Saffron response to irrigation water salinity, cow manure and planting method," Agricultural Water Management, Elsevier, vol. 150(C), pages 57-66.
    19. Katerji, N. & van Hoorn, J.W. & Fares, C. & Hamdy, A. & Mastrorilli, M. & Oweis, T., 2005. "Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance," Agricultural Water Management, Elsevier, vol. 75(2), pages 85-91, July.
    20. Katerji, N. & van Hoorn, J.W. & Hamdy, A. & Mastrorilli, M. & Oweis, T., 2005. "Salt tolerance analysis of chickpea, faba bean and durum wheat varieties: I. Chickpea and faba bean," Agricultural Water Management, Elsevier, vol. 72(3), pages 177-194, April.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:7:y:2015:i:10:p:281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.