IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v2y2010i1p162.html
   My bibliography  Save this article

An Empirical Simplification of the Temperature Penman-Monteith Model for the Tropics

Author

Listed:
  • Eric Kra

Abstract

A simple empirical equation (EPM) is presented to considerably shorten the computational steps required to estimatereference grass evapotranspiration (ETo) in the tropics using the FAO-56 Penman-Monteith equation (TPM) when theonly available weather data are those of temperature. Generally EPM predicted TPM ETo with very high efficiencies,achieving statistical performance measures as high as r2 =1.00 , E1 = 0.98 , E2 =1.00, MAE=0.01 mm/day in testson data from six locations in four countries in West Africa. EPM was of general form , = b / /17000ETo EPM T Rs k ? Ra? ,where ETo = reference grass ETo (MJ m?2 d ?1 ), T = daily average air temperature ( o C), Rs = estimated solarradiation (MJ m ?2 d ?1 ), Ra = computed extraterrestrial radiation (MJ m ?2 d ?1 ); b , k , and ? , were parameterscomputed from local latitude and temperature data. The simplicity of EPM is expected to encourage wider usage ofTPM ETo estimates which are more accurate than estimates obtained by using locally-uncalibrated versions of simplerETo models where only temperature data are available.

Suggested Citation

  • Eric Kra, 2010. "An Empirical Simplification of the Temperature Penman-Monteith Model for the Tropics," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 2(1), pages 162-162, February.
  • Handle: RePEc:ibn:jasjnl:v:2:y:2010:i:1:p:162
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/3886/4373
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/3886
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.
    2. Gavilan, P. & Lorite, I.J. & Tornero, S. & Berengena, J., 2006. "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment," Agricultural Water Management, Elsevier, vol. 81(3), pages 257-281, March.
    3. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    2. Houshang Ghamarnia & Vahid Rezvani & Erfan Khodaei & Hossein Mirzaei, 2012. "Time and Place Calibration of the Hargreaves Equation for Estimating Monthly Reference Evapotranspiration under Different Climatic Conditions," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(3), pages 111-111, January.
    3. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    4. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    6. O.E. Mohawesh, 2011. "Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 145-152.
    7. Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
    8. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    9. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    10. Mohamed A. Mattar & A. A. Alazba & Bander Alblewi & Bahram Gharabaghi & Mohamed A. Yassin, 2016. "Evaluating and Calibrating Reference Evapotranspiration Models Using Water Balance under Hyper-Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3745-3767, September.
    11. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    12. Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
    13. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    14. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    15. Gavilán, P. & Castillo-Llanque, F., 2009. "Estimating reference evapotranspiration with atmometers in a semiarid environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 465-472, March.
    16. Ying Guo & Rui Wang & Zhijun Tong & Xingpeng Liu & Jiquan Zhang, 2019. "Dynamic Evaluation and Regionalization of Maize Drought Vulnerability in the Midwest of Jilin Province," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    17. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    18. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    19. Sharafi, Saeed & Nahvinia, Mohammad Javad, 2024. "Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions," Agricultural Water Management, Elsevier, vol. 299(C).
    20. Dinpashoh, Yagob, 2006. "Study of reference crop evapotranspiration in I.R. of Iran," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 123-129, July.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:2:y:2010:i:1:p:162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.