IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424001926.html
   My bibliography  Save this article

Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions

Author

Listed:
  • Sharafi, Saeed
  • Nahvinia, Mohammad Javad

Abstract

Climate variability plays a pivotal role in rainfed agriculture, especially within arid regions. Analyzing these fluctuations across diverse climatic conditions establishes a foundation for subsequent investigations. In Iran, the FAO56 aridity index categorizes the nation into very dry, dry, semidry, and humid climate classifications. This study aimed to explore equations derived from multiple linear regression (MLR) and the disparities between predicted and observed yields of rainfed wheat and barley across Iran's varying climates. Meteorological data, encompassing rainfall (R), mean temperature (Tmean), solar radiation (S), and wind speed (U2), were compiled from 44 synoptic stations spanning 1981–2020. These data constituted inputs for the MLR models employed to simulate rainfed wheat and barley yields. The Global Performance Indicator (GPI), a 5-point statistical criteria index, was utilized to assess MLR model performance. The findings unveiled superior MLR model performance in dry climates (R2=0.84 for wheat and R2=0.9 for barley) compared to humid climates (R2=0.69 for wheat and R2=0.66 for barley), evidenced by lower statistical error criteria values. Moreover, across all climates, the MLR models exhibited more accurate predictions for rainfed wheat yield (GPI=1559.3) in contrast to rainfed barley (GPI=1536). In conclusion, this study sheds light on the notable role of climate in rainfed agriculture, showcasing the efficacy of MLR models in predicting yields across varying climatic contexts.

Suggested Citation

  • Sharafi, Saeed & Nahvinia, Mohammad Javad, 2024. "Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424001926
    DOI: 10.1016/j.agwat.2024.108857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Bannayan & Ehsan Eyshi Rezaei, 2014. "Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 211-227, February.
    2. Rafaelle Bertini & Abdallah Zouache, 2021. "Agricultural Land Issues in the Middle East and North Africa," American Journal of Economics and Sociology, Wiley Blackwell, vol. 80(2), pages 549-583, March.
    3. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    4. Almeida-Dias, J. & Figueira, J.R. & Roy, B., 2010. "Electre Tri-C: A multiple criteria sorting method based on characteristic reference actions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 565-580, August.
    5. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.
    6. Schoppach, Rémy & Soltani, Afshin & Sinclair, Thomas R. & Sadok, Walid, 2017. "Yield comparison of simulated rainfed wheat and barley across Middle-East," Agricultural Systems, Elsevier, vol. 153(C), pages 101-108.
    7. Stone, R.J., 1994. "A nonparametric statistical procedure for ranking the overall performance of solar radiation models at multiple locations," Energy, Elsevier, vol. 19(7), pages 765-769.
    8. Shahram Rezapour & Erfan Jooyandeh & Mohsen Ramezanzade & Ali Mostafaeipour & Mehdi Jahangiri & Alibek Issakhov & Shahariar Chowdhury & Kuaanan Techato, 2021. "Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    9. Sabziparvar, Ali A., 2008. "A simple formula for estimating global solar radiation in central arid deserts of Iran," Renewable Energy, Elsevier, vol. 33(5), pages 1002-1010.
    10. Ababaei, Behnam & Ramezani Etedali, Hadi, 2017. "Water footprint assessment of main cereals in Iran," Agricultural Water Management, Elsevier, vol. 179(C), pages 401-411.
    11. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    12. Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Simón-Martín, Miguel & Alonso-Tristán, Cristina & Díez-Mediavilla, Montserrat, 2017. "Diffuse solar irradiance estimation on building's façades: Review, classification and benchmarking of 30 models under all sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 783-802.
    2. Eduardo Fernández & José Rui Figueira & Jorge Navarro, 2023. "A theoretical look at ordinal classification methods based on comparing actions with limiting boundaries between adjacent classes," Annals of Operations Research, Springer, vol. 325(2), pages 819-843, June.
    3. Starke, Allan R. & Lemos, Leonardo F.L. & Boland, John & Cardemil, José M. & Colle, Sergio, 2018. "Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction," Renewable Energy, Elsevier, vol. 125(C), pages 472-484.
    4. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    5. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    6. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    7. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    8. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    9. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    10. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge & Solares, Efrain, 2022. "Handling imperfect information in multiple criteria decision-making through a comprehensive interval outranking approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    11. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    12. Chintala, Syam & Karimindla, Arun Rao & Kambhammettu, BVN P., 2024. "Scaling relations between leaf and plant water use efficiencies in rainfed Cotton," Agricultural Water Management, Elsevier, vol. 292(C).
    13. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    14. Hu, Qiwei & Chakhar, Salem & Siraj, Sajid & Labib, Ashraf, 2017. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1136-1163.
    15. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    16. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    17. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    18. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    19. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    20. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424001926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.