IDEAS home Printed from https://ideas.repec.org/a/ibn/ijefaa/v11y2019i9p1.html
   My bibliography  Save this article

Estimating the Level of the Brazilian Yield Curve Using the Time-Varying Coefficient Model GAS (2,2) with Gamma Distribution

Author

Listed:
  • Daiane Rodrigues dos Santos
  • Tiago Costa Ribeiro
  • Marco Aur¨¦lio Sanfins

Abstract

The level of the yield curve is strongly associated with a very important macroeconomic variable for developing economies- the inflation. Therefore, it becomes relevant for economic studies the development of a time series model that can accurately predict this variable. This article proposes the estimation and prediction of the yield curve level using the GAS (Generalized Autoregressive Score) class of time-varying coefficient models. The formulation of these models facilitates a general framework for time series modelling presenting a series of advantages, including the possibility of specifying any conditional distribution deemed appropriate for the yield curve level. In addition, the complete structure of the predictive distribution is transported to the mechanism that updates the time-varying parameters, via score function. When analyzing the evaluation criteria, the measures of adherence, and both Wilcoxon and Diebold & Mariano tests, it was verified that the adjustment of the GAS model (2,2) with gamma distribution to the series containing the Brazilian Yield Curve level of January 2006 and February 2017 presented a satisfactory result.

Suggested Citation

  • Daiane Rodrigues dos Santos & Tiago Costa Ribeiro & Marco Aur¨¦lio Sanfins, 2019. "Estimating the Level of the Brazilian Yield Curve Using the Time-Varying Coefficient Model GAS (2,2) with Gamma Distribution," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(9), pages 1-1, September.
  • Handle: RePEc:ibn:ijefaa:v:11:y:2019:i:9:p:1
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijef/article/download/0/0/40386/41547
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijef/article/view/0/40386
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    2. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    3. Ejsing, Jacob & Garcí­a, Juan Angel & Werner, Thomas, 2007. "The term structure of euro area break-even inflation rates: the impact of seasonality," Working Paper Series 830, European Central Bank.
    4. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    5. Svensson, Lars E O, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4," CEPR Discussion Papers 1051, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    2. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    3. Bingxin Ann Xing & Bruno Feunou & Morvan Nongni-Donfack & Rodrigo Sekkel, 2024. "U.S. Macroeconomic News and Low-Frequency Changes in Small Open Economies’ Bond Yields," Staff Working Papers 24-12, Bank of Canada.
    4. Ravenna, Federico & Seppälä, Juha, 2006. "Monetary policy and rejections of the expectations hypothesis," Research Discussion Papers 25/2006, Bank of Finland.
    5. Valentin Haddad & David Sraer, 2020. "The Banking View of Bond Risk Premia," Journal of Finance, American Finance Association, vol. 75(5), pages 2465-2502, October.
    6. Tommaso Tornese, 2023. "A Euro Area Term Structure Model with Time Varying Exposures," BAFFI CAREFIN Working Papers 23199, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    7. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    8. Halberstadt, Arne, 2023. "Decomposing the yield curve with linear regressions and survey information," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 25-39.
    9. Audzeyeva, Alena & Fuertes, Ana-Maria, 2018. "On the predictability of emerging market sovereign credit spreads," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 140-157.
    10. repec:zbw:bofrdp:2006_025 is not listed on IDEAS
    11. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    12. Taylor, Alan M. & Davis, Josh & Fuenzalida, Cristian, 2019. "The Natural Rate Puzzle: Global Macro Trends and the Market-Implied r," CEPR Discussion Papers 14201, C.E.P.R. Discussion Papers.
    13. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2010. "Forecasting Government Bond Yields with Large Bayesian VARs," Working Papers 662, Queen Mary University of London, School of Economics and Finance.
    14. Ravenna, Federico & Seppälä, Juha, 2006. "Monetary policy and rejections of the expectations hypothesis," Bank of Finland Research Discussion Papers 25/2006, Bank of Finland.
    15. Atsushi Inoue & Barbara Rossi, 2021. "A new approach to measuring economic policy shocks, with an application to conventional and unconventional monetary policy," Quantitative Economics, Econometric Society, vol. 12(4), pages 1085-1138, November.
    16. Michał Brzoza-Brzezina & Jacek Kotłowski, 2014. "Measuring the natural yield curve," Applied Economics, Taylor & Francis Journals, vol. 46(17), pages 2052-2065, June.
    17. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    18. Michal Dvorák & Zlatuše Komárková & Adam Kucera, 2019. "The Czech Government Yield Curve Decomposition at the Lower Bound," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 69(1), pages 2-36, February.
    19. De Rezende, Rafael B. & Ristiniemi, Annukka, 2023. "A shadow rate without a lower bound constraint," Journal of Banking & Finance, Elsevier, vol. 146(C).
    20. Konstantinos Bisiotis & Stelios Psarakis & Athanasios N. Yannacopoulos, 2022. "Affine Term Structure Models: Applications in Portfolio Optimization and Change Point Detection," Mathematics, MDPI, vol. 10(21), pages 1-33, November.
    21. Afonso, António & Martins, Manuel M.F., 2012. "Level, slope, curvature of the sovereign yield curve, and fiscal behaviour," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1789-1807.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijefaa:v:11:y:2019:i:9:p:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.