IDEAS home Printed from https://ideas.repec.org/a/ibn/ijbmjn/v14y2021i12p164.html
   My bibliography  Save this article

Discriminant Analysis and Firms’ Bankruptcy: Evidence from European SMEs

Author

Listed:
  • Candida Bussoli
  • Mariateresa Cuoccio
  • Claudio Giannotti

Abstract

Using two research methodologies - the Altman’s z-score discriminant analysis, in the revised version referring to non-listed firms, and the Bayesian approach Diagnostic Distribution - the paper investigates the possibility of discriminating between healthy and bankrupt European SMEs based on financial statements and using a Bayesian discriminant model inspired by Altman’s model. It also aims to verify whether the geographic location of European SMEs influences the ability to discriminate between healthy versus bankrupt firms. The work finds a significant homogeneity regarding the capability of the new discriminant models to classify healthy and bankrupt SMEs within the Euro Area and in different geographic locations. The empirical observations confirm that financial statements are a relevant channel by which SMEs communicate information to the financial system, even if they cannot provide all the information that allows for healthy and bankrupt SMEs to be distinguished.

Suggested Citation

  • Candida Bussoli & Mariateresa Cuoccio & Claudio Giannotti, 2021. "Discriminant Analysis and Firms’ Bankruptcy: Evidence from European SMEs," International Journal of Business and Management, Canadian Center of Science and Education, vol. 14(12), pages 164-164, July.
  • Handle: RePEc:ibn:ijbmjn:v:14:y:2021:i:12:p:164
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijbm/article/download/0/0/41272/42684
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijbm/article/view/0/41272
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carey, Mark & Hrycay, Mark, 2001. "Parameterizing credit risk models with rating data," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 197-270, January.
    2. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    3. Edward I. Altman & Gabriele Sabato, 2013. "MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279, World Scientific Publishing Co. Pte. Ltd..
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    6. Giorgio Albareto & Michele Benvenuti & Sauro Mocetti & Marcello Pagnini & Paola Rossi, 2008. "Lending organizational structure and the use of credit scoring: evidence from a survey on Italian banks," Questioni di Economia e Finanza (Occasional Papers) 12, Bank of Italy, Economic Research and International Relations Area.
    7. Vineet Agarwal & Richard Taffler, 2007. "Twenty‐five years of the Taffler z‐score model: Does it really have predictive ability?," Accounting and Business Research, Taylor & Francis Journals, vol. 37(4), pages 285-300.
    8. Berger, Philip G. & Ofek, Eli & Swary, Itzhak, 1996. "Investor valuation of the abandonment option," Journal of Financial Economics, Elsevier, vol. 42(2), pages 257-287, October.
    9. repec:bla:jfinan:v:59:y:2004:i:2:p:831-868 is not listed on IDEAS
    10. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    11. Fantazzini, Dean & DeGiuli, Maria Elena & Figini, Silvia & Giudici, Paolo, 2009. "Enhanced credit default models for heterogeneous SME segments," Journal of Financial Transformation, Capco Institute, vol. 25, pages 31-39.
    12. Traczynski, Jeffrey, 2017. "Firm Default Prediction: A Bayesian Model-Averaging Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(3), pages 1211-1245, June.
    13. Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.
    14. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    2. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    3. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    4. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    5. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    6. Rassoul Yazdipour & Richard Constand, 2010. "Predicting Firm Failure: A Behavioral Finance Perspective," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 14(3), pages 90-104, Fall.
    7. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    8. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    9. Kaya, Orcun, 2022. "Determinants and consequences of SME insolvency risk during the pandemic," Economic Modelling, Elsevier, vol. 115(C).
    10. Sunghwa Park & Hyunsok Kim & Janghan Kwon & Taeil Kim, 2021. "Empirics of Korean Shipping Companies’ Default Predictions," Risks, MDPI, vol. 9(9), pages 1-17, September.
    11. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    12. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    13. Marco Muscettola, 2019. "Distinctiveness of Highly Risky Italian Firms That are Saved-A Logistic Approach," Applied Economics and Finance, Redfame publishing, vol. 6(1), pages 64-73, January.
    14. Michal Karas & Mária Režòáková, 2021. "The role of financial constraint factors in predicting SME default," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 859-883, December.
    15. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    16. McGuinness, Gerard & Hogan, Teresa & Powell, Ronan, 2018. "European trade credit use and SME survival," Journal of Corporate Finance, Elsevier, vol. 49(C), pages 81-103.
    17. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    18. Evangelos C. Charalambakis, 2014. "On corporate financial distress prediction: what can we learn from private firms in a small open economy?," Working Papers 188, Bank of Greece.
    19. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    20. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijbmjn:v:14:y:2021:i:12:p:164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.