IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5098183.html
   My bibliography  Save this article

Electric Vehicle Routing Problem with Charging Time and Variable Travel Time

Author

Listed:
  • Sai Shao
  • Wei Guan
  • Bin Ran
  • Zhengbing He
  • Jun Bi

Abstract

An electric vehicle routing problem with charging time and variable travel time is developed to address some operational issues such as range limitation and charging demand. The model is solved by using genetic algorithm to obtain the routes, the vehicle departure time at the depot, and the charging plan. Meanwhile, a dynamic Dijkstra algorithm is applied to find the shortest path between any two adjacent nodes along the routes. To prevent the depletion of all battery power and ensure safe operation in transit, electric vehicles with insufficient battery power can be repeatedly recharged at charging stations. The fluctuations in travel time are implemented to reflect a dynamic traffic environment. In conclusion, a large and realistic case study with a road network in the Beijing urban area is conducted to evaluate the model performance and the solution technology and analyze the results.

Suggested Citation

  • Sai Shao & Wei Guan & Bin Ran & Zhengbing He & Jun Bi, 2017. "Electric Vehicle Routing Problem with Charging Time and Variable Travel Time," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, January.
  • Handle: RePEc:hin:jnlmpe:5098183
    DOI: 10.1155/2017/5098183
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5098183.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5098183.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5098183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Yunlin Guan & Yun Wang & Xuedong Yan & Haonan Guo & Yi Zhao, 2022. "The One E-Ticket Customized Bus Service Mode for Passengers with Multiple Trips and the Routing Problem," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    3. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    4. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    5. Lera-Romero, Gonzalo & Miranda Bront, Juan José & Soulignac, Francisco J., 2024. "A branch-cut-and-price algorithm for the time-dependent electric vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 312(3), pages 978-995.
    6. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    7. Wang, Ning & Tian, Hangqi & Wu, Huahua & Liu, Qiaoqian & Luan, Jie & Li, Yuan, 2023. "Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet," Energy, Elsevier, vol. 263(PC).
    8. Vanny Minanda & Yun-Chia Liang & Angela H. L. Chen & Aldy Gunawan, 2024. "Application of an Improved Harmony Search Algorithm on Electric Vehicle Routing Problems," Energies, MDPI, vol. 17(15), pages 1-22, July.
    9. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Wang, Hongfei & Guan, Hongzhi & Qin, Huanmei & Zhao, Pengfei, 2024. "Assessing the sustainability of time-dependent electric demand responsive transit service through deep reinforcement learning," Energy, Elsevier, vol. 296(C).
    11. Jun, Sungbum & Lee, Seokcheon & Yih, Yuehwern, 2021. "Pickup and delivery problem with recharging for material handling systems utilising autonomous mobile robots," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1153-1168.
    12. Alp, Osman & Tan, Tarkan & Udenio, Maximiliano, 2022. "Transitioning to sustainable freight transportation by integrating fleet replacement and charging infrastructure decisions," Omega, Elsevier, vol. 109(C).
    13. Amin Aghalari & Darweesh Ehssan Salamah & Carlos Marino & Mohammad Marufuzzaman, 2023. "Electric vehicles fast charger location-routing problem under ambient temperature," Annals of Operations Research, Springer, vol. 324(1), pages 721-759, May.
    14. Tahami, Hesamoddin & Rabadi, Ghaith & Haouari, Mohamed, 2020. "Exact approaches for routing capacitated electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    15. Remigiusz Iwańkowicz, 2021. "Effective Permutation Encoding for Evolutionary Optimization of the Electric Vehicle Routing Problem," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5098183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.