IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3716-d1444423.html
   My bibliography  Save this article

Application of an Improved Harmony Search Algorithm on Electric Vehicle Routing Problems

Author

Listed:
  • Vanny Minanda

    (Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan 320, Taiwan)

  • Yun-Chia Liang

    (Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan 320, Taiwan)

  • Angela H. L. Chen

    (Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan)

  • Aldy Gunawan

    (School of Computing and Information Systems, Singapore Management University, 80 Stamford Road, Singapore 178902, Singapore)

Abstract

Electric vehicles (EVs) have gained considerable popularity, driven in part by an increased concern for the impact of automobile emissions on climate change. Electric vehicles (EVs) cover more than just conventional cars and trucks. They also include electric motorcycles, such as those produced by Gogoro, which serve as the primary mode of transportation for food and package delivery services in Taiwan. Consequently, the Electric Vehicle Routing Problem (EVRP) has emerged as an important variation of the Capacitated Vehicle Routing Problem (CVRP). In addition to the CVRP’s constraints, the EVRP requires vehicles to visit a charging station before the battery level is insufficient to continue service. EV battery consumption is linearly correlated to their weight. These additional constraints make the EVRP more challenging than the conventional CVRP. This study proposes an improved Harmony Search Algorithm (HSA), with performance validated by testing 24 available benchmark instances in the EVRP. This study also proposes a novel update mechanism in the improvement stage and a strategy to improve the routes with charging stations. The results show that in small and large instances, the proposed HSA improved the number of trips to the charging stations by 24% and 4.5%, respectively. These results were also verified using the Wilcoxon signed-rank significant test.

Suggested Citation

  • Vanny Minanda & Yun-Chia Liang & Angela H. L. Chen & Aldy Gunawan, 2024. "Application of an Improved Harmony Search Algorithm on Electric Vehicle Routing Problems," Energies, MDPI, vol. 17(15), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3716-:d:1444423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Xianlong Ge & Ziqiang Zhu & Yuanzhi Jin, 2020. "Electric Vehicle Routing Problems with Stochastic Demands and Dynamic Remedial Measures," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, August.
    3. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    4. Letchford, Adam N. & Salazar-González, Juan-José, 2019. "The Capacitated Vehicle Routing Problem: Stronger bounds in pseudo-polynomial time," European Journal of Operational Research, Elsevier, vol. 272(1), pages 24-31.
    5. Zhixue Zhao & Xiamiao Li & Xiancheng Zhou, 2020. "Distribution Route Optimization for Electric Vehicles in Urban Cold Chain Logistics for Fresh Products under Time-Varying Traffic Conditions," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-17, October.
    6. Sai Shao & Wei Guan & Bin Ran & Zhengbing He & Jun Bi, 2017. "Electric Vehicle Routing Problem with Charging Time and Variable Travel Time," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, January.
    7. Osman Atilla Yazır & Çağrı Koç & Eda Yücel, 2023. "The multi-period home healthcare routing and scheduling problem with electric vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 853-901, September.
    8. Hof, Julian & Schneider, Michael & Goeke, Dominik, 2017. "Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 102-112.
    9. J. Barco & A. Guerra & L. Muñoz & N. Quijano, 2017. "Optimal Routing and Scheduling of Charge for Electric Vehicles: A Case Study," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-16, November.
    10. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    2. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    3. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    4. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Yusuf Yilmaz & Can B. Kalayci, 2022. "Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery," Mathematics, MDPI, vol. 10(17), pages 1-22, August.
    6. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    7. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    8. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    9. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    10. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    11. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    12. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    13. Cosmin Sabo & Petrică C. Pop & Andrei Horvat-Marc, 2020. "On the Selective Vehicle Routing Problem," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
    14. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    15. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    16. Park, Hyunwoo & Lee, Chungmok, 2024. "An exact algorithm for maximum electric vehicle flow coverage problem with heterogeneous chargers, nonlinear charging time and route deviations," European Journal of Operational Research, Elsevier, vol. 315(3), pages 926-951.
    17. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    18. Wu, Guoyuan & Peng, Dongbo & Boriboonsomsin, Kanok, 2024. "Developing an Efficient Dispatching Strategy to Support Commercial Fleet Electrification," Institute of Transportation Studies, Working Paper Series qt2qz0n2gv, Institute of Transportation Studies, UC Davis.
    19. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    20. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3716-:d:1444423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.