The Adjoint Method for the Inverse Problem of Option Pricing
Author
Abstract
Suggested Citation
DOI: 10.1155/2014/314104
Download full text from publisher
References listed on IDEAS
- Boes, Mark-Jan & Drost, Feike C. & Werker, Bas J. M., 2007.
"The Impact of Overnight Periods on Option Pricing,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(2), pages 517-533, June.
- Boes, M.J. & Drost, F.C. & Werker, B.J.M., 2005. "The Impact of Overnight Periods on Option Pricing," Other publications TiSEM 2c3a7553-f718-4caa-90f2-b, Tilburg University, School of Economics and Management.
- Boes, M.J. & Drost, F.C. & Werker, B.J.M., 2007. "The impact of overnight periods on option pricing," Other publications TiSEM fc062462-2359-45ac-8826-d, Tilburg University, School of Economics and Management.
- Boes, M.J. & Drost, F.C. & Werker, B.J.M., 2005. "The Impact of Overnight Periods on Option Pricing," Discussion Paper 2005-1, Tilburg University, Center for Economic Research.
- Isao Ishida & Michael McAleer & Kosuke Oya, 2011.
"Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX,"
Working Papers in Economics
11/11, University of Canterbury, Department of Economics and Finance.
- Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," KIER Working Papers 759, Kyoto University, Institute of Economic Research.
- Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," Documentos de Trabajo del ICAE 2011-17, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Leland, Hayne E, 1985.
"Option Pricing and Replication with Transactions Costs,"
Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
- Hayne E. Leland., 1984. "Option Pricing and Replication with Transactions Costs," Research Program in Finance Working Papers 144, University of California at Berkeley.
- Franks, Julian R & Schwartz, Eduardo S, 1991. "The Stochastic Behaviour of Market Variance Implied in the Prices of Index Options," Economic Journal, Royal Economic Society, vol. 101(409), pages 1460-1475, November.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Ronald Lagnado & Stanley Osher, "undated". "A Technique for Calibrating Derivative Security Pricing Models: Numerical Solution of an Inverse Problem," Computing in Economics and Finance 1997 101, Society for Computational Economics.
- Chance, Don M, 1996. "A Generalized Simple Formula to Compute the Implied Volatility," The Financial Review, Eastern Finance Association, vol. 31(4), pages 859-867, November.
- Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chambers, Donald R & Nawalkha, Sanjay K, 2001. "An Improved Approach to Computing Implied Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 89-99, August.
- Carl Chiarella & Mark Craddock & Nadima El-Hassan, 2000. "The Calibration of Stock Option Pricing Models Using Inverse Problem Methodology," Research Paper Series 39, Quantitative Finance Research Centre, University of Technology, Sydney.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
- Yao Elikem Ayekple & Charles Kofi Tetteh & Prince Kwaku Fefemwole, 2018. "Markov Chain Monte Carlo Method for Estimating Implied Volatility in Option Pricing," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 10(6), pages 108-116, December.
- Minqiang Li & Kyuseok Lee, 2011.
"An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
- Li, Minqiang, 2008. "An Adaptive Succesive Over-relaxation Method for Computing the Black-Scholes Implied Volatility," MPRA Paper 6867, University Library of Munich, Germany.
- Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
- Sukhomlin, Nikolay & Santana Jiménez, Lisette Josefina, 2010. "Problema de calibración de mercado y estructura implícita del modelo de bonos de Black-Cox = Market Calibration Problem and the Implied Structure of the Black-Cox Bond Model," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 10(1), pages 73-98, December.
- Steven Li, 2003. "The estimation of implied volatility from the Black-Scholes model: some new formulas and their applications," School of Economics and Finance Discussion Papers and Working Papers Series 141, School of Economics and Finance, Queensland University of Technology.
- Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Yixiao Lu & Yihong Wang & Tinggan Yang, 2021. "Adaptive Gradient Descent Methods for Computing Implied Volatility," Papers 2108.07035, arXiv.org, revised Mar 2023.
- Dan Stefanica & Radoš Radoičić, 2017. "An Explicit Implied Volatility Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-32, November.
- Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
- Dai, Min & Tang, Ling & Yue, Xingye, 2016. "Calibration of stochastic volatility models: A Tikhonov regularization approach," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 66-81.
- Jaehyuk Choi & Kwangmoon Kim & Minsuk Kwak, 2009. "Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 261-268.
- Peter Carr & Liuren Wu, 2014.
"Static Hedging of Standard Options,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
- Peter Carr & Liuren Wu, 2013. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46, December.
- Peter Carr & Liuren Wu, 2004. "Static Hedging of Standard Options," Finance 0409016, University Library of Munich, Germany.
- Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
- Mastinšek Miklavž, 2015. "Reduction of the Mean Hedging Transaction Costs / Redukcija povprečnih transakcijskih stroškov hedging tehnike," Naše gospodarstvo/Our economy, Sciendo, vol. 61(5), pages 23-31, October.
- Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
- Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:314104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.