IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/1295485.html
   My bibliography  Save this article

Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization

Author

Listed:
  • Haitao Xu
  • Pan Pu
  • Feng Duan

Abstract

As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and high-level problems is the vehicle routing problem (VRP). Dynamic vehicle routing problem (DVRP) is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers’ demands appear with time, and the unserved customers’ points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO), which is the traditional Ant Colony Optimization (ACO) fusing improved K -means and crossover operation. K -means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.

Suggested Citation

  • Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.
  • Handle: RePEc:hin:jnddns:1295485
    DOI: 10.1155/2018/1295485
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2018/1295485.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2018/1295485.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1295485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingcheng Xu & Li Wang & Yuexiang Yang, 2013. "Dynamic Vehicle Routing Using an Improved Variable Neighborhood Search Algorithm," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-12, February.
    2. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    3. Andres Figliozzi, Miguel, 2012. "The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 616-636.
    4. Mes, Martijn & van der Heijden, Matthieu & van Harten, Aart, 2007. "Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems," European Journal of Operational Research, Elsevier, vol. 181(1), pages 59-75, August.
    5. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    6. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    7. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    8. E. Bonabeau & M. Dorigo & G. Theraulaz, 2000. "Inspiration for optimization from social insect behaviour," Nature, Nature, vol. 406(6791), pages 39-42, July.
    9. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    10. Yu, Bin & Yang, Zhong Zhen, 2011. "An ant colony optimization model: The period vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 166-181, March.
    11. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    12. Goel, Asvin & Gruhn, Volker, 2008. "A General Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 650-660, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Yong Wang & Jiayi Zhe & Xiuwen Wang & Yaoyao Sun & Haizhong Wang, 2022. "Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows," Sustainability, MDPI, vol. 14(11), pages 1-37, May.
    3. Sebastián Dávila & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas & Mauricio Camargo, 2021. "Vehicle Routing Problem with Deadline and Stochastic Service Times: Case of the Ice Cream Industry in Santiago City of Chile," Mathematics, MDPI, vol. 9(21), pages 1-18, October.
    4. Maskooki, Alaleh & Deb, Kalyanmoy & Kallio, Markku, 2022. "A customized genetic algorithm for bi-objective routing in a dynamic network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 615-629.
    5. Sina Abolhoseini & Ali Asghar Alesheikh, 2021. "Dynamic routing with ant system and memory-based decision-making process," Environment Systems and Decisions, Springer, vol. 41(2), pages 198-211, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    2. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    3. Grigorios D. Konstantakopoulos & Sotiris P. Gayialis & Evripidis P. Kechagias, 2022. "Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification," Operational Research, Springer, vol. 22(3), pages 2033-2062, July.
    4. Baozhen Yao & Chao Chen & Xiaolin Song & Xiaoli Yang, 2019. "Fresh seafood delivery routing problem using an improved ant colony optimization," Annals of Operations Research, Springer, vol. 273(1), pages 163-186, February.
    5. Ozbaygin, Gizem & Savelsbergh, Martin, 2019. "An iterative re-optimization framework for the dynamic vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 207-235.
    6. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    7. R Torres-Velázquez & V Estivill-Castro, 2004. "Local search for Hamiltonian Path with applications to clustering visitation paths," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 737-748, July.
    8. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    9. Ozgur, C. O. & Brown, J. R., 1995. "A two-stage traveling salesman procedure for the single machine sequence-dependent scheduling problem," Omega, Elsevier, vol. 23(2), pages 205-219, April.
    10. Dimitris Bertsimas & Patrick Jaillet, & Sébastien Martin, 2019. "Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications," Operations Research, INFORMS, vol. 67(1), pages 143-162, January.
    11. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    12. Douglas G. Macharet & Armando Alves Neto & Vila F. Camara Neto & Mario F. M. Campos, 2018. "Dynamic region visit routing problem for vehicles with minimum turning radius," Journal of Heuristics, Springer, vol. 24(1), pages 83-109, February.
    13. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    14. N. A. Arellano-Arriaga & J. Molina & S. E. Schaeffer & A. M. Álvarez-Socarrás & I. A. Martínez-Salazar, 2019. "A bi-objective study of the minimum latency problem," Journal of Heuristics, Springer, vol. 25(3), pages 431-454, June.
    15. Zhang, Ruiyou & Lu, Jye-Chyi & Wang, Dingwei, 2014. "Container drayage problem with flexible orders and its near real-time solution strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 235-251.
    16. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    17. Scianna, Marco, 2024. "The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 357-382.
    18. CASTRO, Marco & SÖRENSEN, Kenneth & GOOS, Peter & VANSTEENWEGEN, Pieter, 2014. "The multiple travelling salesperson problem with hotel selection," Working Papers 2014030, University of Antwerp, Faculty of Business and Economics.
    19. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    20. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:1295485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.