IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v273y2019i1d10.1007_s10479-017-2531-2.html
   My bibliography  Save this article

Fresh seafood delivery routing problem using an improved ant colony optimization

Author

Listed:
  • Baozhen Yao

    (Dalian University of Technology)

  • Chao Chen

    (Dalian University of Technology)

  • Xiaolin Song

    (Dalian Maritime University)

  • Xiaoli Yang

    (Dalian Maritime University)

Abstract

Energy cost for keeping fresh seafood in cold condition is a main feature of a fresh seafood delivery routing problem. In the delivery routing problem, energy cost varies during the transportation process and the service process. In addition, there are many fresh seafood product factories whose seafood products should be delivered to a set of customers. Therefore, this paper models the fresh seafood delivery problem as a multi-depot vehicle routing problem, which aims to find the routes with the least cost. Due to the complexity of the problem, a method is used to reduce the complexity by changing the multi-depot vehicle routing problem into a vehicle routing problem with a dummy depot in this paper. Then, ant colony optimization (ACO) is used to solve this problem. Scanning strategy and crossover operation are also adopted to improve the performance of ACO. At last, the computational results of the benchmark problems of the multi-depot vehicle routing problem indicate the effectiveness of the algorithm. Furthermore, the real-life fresh seafood delivery routing problem from Dalian city suggests the proposed model is feasible.

Suggested Citation

  • Baozhen Yao & Chao Chen & Xiaolin Song & Xiaoli Yang, 2019. "Fresh seafood delivery routing problem using an improved ant colony optimization," Annals of Operations Research, Springer, vol. 273(1), pages 163-186, February.
  • Handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-017-2531-2
    DOI: 10.1007/s10479-017-2531-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2531-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2531-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "Implicit depot assignments and rotations in vehicle routing heuristics," European Journal of Operational Research, Elsevier, vol. 237(1), pages 15-28.
    3. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    4. Gillett, Billy E & Johnson, Jerry G, 1976. "Multi-terminal vehicle-dispatch algorithm," Omega, Elsevier, vol. 4(6), pages 711-718.
    5. B. Bullnheimer & R.F. Hartl & C. Strauss, 1999. "An improved Ant System algorithm for theVehicle Routing Problem," Annals of Operations Research, Springer, vol. 89(0), pages 319-328, January.
    6. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    7. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    8. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    9. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    10. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    11. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    12. Yu, Bin & Yang, Zhong Zhen, 2011. "An ant colony optimization model: The period vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 166-181, March.
    13. B Yu & Z-Z Yang & J-X Xie, 2011. "A parallel improved ant colony optimization for multi-depot vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 183-188, January.
    14. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    15. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    16. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    17. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    2. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.
    3. Wan Fang & Guo Haixiang & Li Jinling & Gu Mingyun & Pan Wenwen, 2021. "Multi-objective Emergency Scheduling for Geological Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1323-1358, January.
    4. Daqing Wu & Chenxiang Wu, 2022. "Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows," Agriculture, MDPI, vol. 12(6), pages 1-28, May.
    5. Xuhong Cai & Li Jiang & Songhu Guo & Hejiao Huang & Hongwei Du, 2022. "TLHSA and SACA: two heuristic algorithms for two variant VRP models," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2996-3022, November.
    6. Cui, Shaohua & Yao, Baozhen & Chen, Gang & Zhu, Chao & Yu, Bin, 2020. "The multi-mode mobile charging service based on electric vehicle spatiotemporal distribution," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    2. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    3. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    4. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    5. Said Dabia & Stefan Ropke & Tom van Woensel, 2019. "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts," Transportation Science, INFORMS, vol. 53(5), pages 1354-1371, September.
    6. Nguyen, Viet-Phuong & Prins, Christian & Prodhon, Caroline, 2012. "Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking," European Journal of Operational Research, Elsevier, vol. 216(1), pages 113-126.
    7. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    8. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    9. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    10. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    11. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    12. María-Consuelo Casabán & Rafael Company & Lucas Jódar, 2020. "Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    13. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    14. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    15. Bossert, Walter & Derks, Jean & Peters, Hans, 2005. "Efficiency in uncertain cooperative games," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 12-23, July.
    16. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    17. Sin-Yu Ho & N.M. Odhiambo, 2018. "Analysing the macroeconomic drivers of stock market development in the Philippines," Cogent Economics & Finance, Taylor & Francis Journals, vol. 6(1), pages 1451265-145, January.
    18. Natalia Nikolaevna Natocheeva* & Yuri Alexandrovich Rovensky & Yuri Yuryevich Rusanov & Tatiana Viktorovna Belyanchikova & Anna Anatolevna Staurskaya, 2018. "Optimizing Variability of Approaches to Regulatory Financing of Higher Education Services," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 221-227:3.
    19. Philip Arestis & Howard Stein, 2005. "An Institutional Perspective to Finance and Development as an Alternative to Financial Liberalisation," International Review of Applied Economics, Taylor & Francis Journals, vol. 19(4), pages 381-398.
    20. Cabada, Alberto & Fernández-Gómez, Carlos, 2015. "Constant sign solutions of two-point fourth order problems," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 122-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-017-2531-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.