IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/278672.html
   My bibliography  Save this article

Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation

Author

Listed:
  • Xiao-Jun Yang
  • Jordan Hristov
  • H. M. Srivastava
  • Bashir Ahmad

Abstract

A mathematical model of fractal waves on shallow water surfaces is developed by using the concepts of local fractional calculus. The derivations of linear and nonlinear local fractional versions of the Korteweg-de Vries equation describing fractal waves on shallow water surfaces are obtained.

Suggested Citation

  • Xiao-Jun Yang & Jordan Hristov & H. M. Srivastava & Bashir Ahmad, 2014. "Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, June.
  • Handle: RePEc:hin:jnlaaa:278672
    DOI: 10.1155/2014/278672
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/278672.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/278672.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/278672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hari M. Srivastava & Khaled Mohammed Saad & Walid M. Hamanah, 2022. "Certain New Models of the Multi-Space Fractal-Fractional Kuramoto-Sivashinsky and Korteweg-de Vries Equations," Mathematics, MDPI, vol. 10(7), pages 1-13, March.
    2. Heydari, M.H. & Razzaghi, M. & Avazzadeh, Z., 2021. "Orthonormal shifted discrete Chebyshev polynomials: Application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Sheng Zhang & Yuanyuan Wei & Bo Xu, 2019. "Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example," Complexity, Hindawi, vol. 2019, pages 1-9, August.
    4. Spineanu, F. & Vlad, M., 2015. "Self-organization of the vorticity field in two-dimensional quasi-ideal fluids: The statistical and field-theoretical formulations," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 473-479.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:278672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.