IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/154387.html
   My bibliography  Save this article

Dynamical Analysis of SIR Epidemic Models with Distributed Delay

Author

Listed:
  • Wencai Zhao
  • Tongqian Zhang
  • Zhengbo Chang
  • Xinzhu Meng
  • Yulin Liu

Abstract

SIR epidemic models with distributed delay are proposed. Firstly, the dynamical behaviors of the model without vaccination are studied. Using the Jacobian matrix, the stability of the equilibrium points of the system without vaccination is analyzed. The basic reproduction number is got. In order to study the important role of vaccination to prevent diseases, the model with distributed delay under impulsive vaccination is formulated. And the sufficient conditions of globally asymptotic stability of “infection-free†periodic solution and the permanence of the model are obtained by using Floquet’s theorem, small-amplitude perturbation skills, and comparison theorem. Lastly, numerical simulation is presented to illustrate our main conclusions that vaccination has significant effects on the dynamical behaviors of the model. The results can provide effective tactic basis for the practical infectious disease prevention.

Suggested Citation

  • Wencai Zhao & Tongqian Zhang & Zhengbo Chang & Xinzhu Meng & Yulin Liu, 2013. "Dynamical Analysis of SIR Epidemic Models with Distributed Delay," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-15, July.
  • Handle: RePEc:hin:jnljam:154387
    DOI: 10.1155/2013/154387
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/154387.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/154387.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/154387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guodong Liu & Xiaohong Wang & Xinzhu Meng & Shujing Gao, 2017. "Extinction and Persistence in Mean of a Novel Delay Impulsive Stochastic Infected Predator-Prey System with Jumps," Complexity, Hindawi, vol. 2017, pages 1-15, June.
    2. Khrennikov, Andrei, 2021. "Ultrametric diffusion equation on energy landscape to model disease spread in hierarchic socially clustered population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:154387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.