IDEAS home Printed from https://ideas.repec.org/a/hig/fsight/v15y2021i1p67-73.html
   My bibliography  Save this article

Macro Analysis and Forecast of Global Expansion of Electric Vehicles

Author

Listed:
  • Thakur Dhakal

    (Kangwon National University (South Korea))

  • Kyoung-Soon Min

    (Kangwon National University (South Korea))

Abstract

This study analyzes the diffusion of battery electric vehicles (BEV) in the world and evaluates the vehicle charging stations based on the European Union (EU) scenario. Initially, the global BEV sales data from 2005 to 2018 are fitted with the two most frequently used econometric logistics and Bass diffusion models. Further, the study identifies the different stage adopters, forecasts the consumption of BEVs, and examines the velocity and acceleration of BEV diffusion. Finally, future charging stations are examined to meet the BEV sales demand. Results suggest that the adoption of BEVs demonstrates a better fit on the Bass model where the global BEV market is estimated to grow from 5,3 millions in 2019 to near 40 millions units by 2030, and with the reference of the EU countries’ adoption scenario, the global charging stations will be increased from near 2 millions in 2019 to near 10 millions units by 2030.

Suggested Citation

  • Thakur Dhakal & Kyoung-Soon Min, 2021. "Macro Analysis and Forecast of Global Expansion of Electric Vehicles," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 15(1), pages 67-73.
  • Handle: RePEc:hig:fsight:v:15:y:2021:i:1:p:67-73
    as

    Download full text from publisher

    File URL: https://foresight-journal.hse.ru/data/2021/04/12/1387175437/6-Dhakal-67-73.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    3. Loisel, Rodica & Pasaoglu, Guzay & Thiel, Christian, 2014. "Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts," Energy Policy, Elsevier, vol. 65(C), pages 432-443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Rajeev Ranjan & Guha, Pritha & Chakraborty, Abhishek, 2022. "Comparative assessment and selection of electric vehicle diffusion models: A global outlook," Energy, Elsevier, vol. 238(PC).
    2. Monica Bonacina & Mert Demir & Antonio Sileo & Angela Zanoni, 2024. "The slow lane: a study on the diffusion of full-electric cars in Italy," Working Papers 2024.19, Fondazione Eni Enrico Mattei.
    3. Bonacina, Monica & Demir, Mert & Sileo, Antonio & Zanoni, Angela, 2024. "The slow lane: a study on the diffusion of full-electric cars in Italy," FEEM Working Papers 344135, Fondazione Eni Enrico Mattei (FEEM).
    4. Anqi Chen & Shibing You, 2022. "The Fuel Cycle Carbon Reduction Effects of New Energy Vehicles: Empirical Evidence Based on Regional Data in China," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Qudrat-Ullah, 2022. "Adoption and Growth of Fuel Cell Vehicles in China: The Case of BYD," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    2. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    3. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    4. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    5. Tao, Miaomiao, 2024. "Dynamics between electric vehicle uptake and green development: Understanding the role of local government competition," Transport Policy, Elsevier, vol. 146(C), pages 227-240.
    6. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    7. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    8. Liu, Changyu & Song, Yadong & Wang, Wei & Shi, Xunpeng, 2023. "The governance of manufacturers’ greenwashing behaviors: A tripartite evolutionary game analysis of electric vehicles," Applied Energy, Elsevier, vol. 333(C).
    9. Kowalska-Pyzalska, Anna & Michalski, Rafał & Kott, Marek & Skowrońska-Szmer, Anna & Kott, Joanna, 2022. "Consumer preferences towards alternative fuel vehicles. Results from the conjoint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    11. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    12. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    13. He, Wentao & Hao, Xiaoli, 2023. "Competition and welfare effects of introducing new products into the new energy vehicle market: Empirical evidence from Tesla’s entry into the Chinese market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    14. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    15. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    16. Saiful Hasan & Terje Andreas Mathisen, 2020. "Policy measures for electric vehicle adoption. A review of evidence from Norway and China," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 25-46.
    17. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org, revised Oct 2024.
    18. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    19. Gerald Broneske & David Wozabal, 2017. "How Do Contract Parameters Influence the Economics of Vehicle-to-Grid?," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 150-164, February.
    20. Ellen De Schepper & Steven Van Passel & Sebastien Lizin & Thomas Vincent & Benjamin Martin & Xavier Gandibleux, 2016. "Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(1), pages 1-27, March.

    More about this item

    Keywords

    business; innovation; diffusion; potential market; electric vehicle;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:fsight:v:15:y:2021:i:1:p:67-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nataliya Gavrilicheva or Mikhail Salazkin (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.