IDEAS home Printed from https://ideas.repec.org/a/gam/jwaste/v1y2023i4p51-900d1254185.html
   My bibliography  Save this article

Valorizing the Input and Output Waste Streams from Three PtX Case Studies in Denmark—Adopting a Symbiotic Approach

Author

Listed:
  • Rikke Lybæk

    (Institute of People and Technology (IMT), Roskilde University, 4000 Roskilde, Denmark)

  • Tyge Kjær

    (Institute of People and Technology (IMT), Roskilde University, 4000 Roskilde, Denmark)

Abstract

This study aimed to investigate the waste streams from the production of hydrogen energy carriers from PtX technology and identify how they can be valorized by applying a symbiotic approach to enable greater utilization of the inputs and outputs from such plants. Various electrolysis development projects are under development or in the pipeline in Europe and Denmark, but in many cases, it is not clear how waste streams are emphasized and valued in these projects. Thus, three exploratory case studies (a city, a rural, and an energy hub case) were investigated herein exemplifying state-of-the-art electrolysis projects currently being deployed, with a focus on identifying how and to what extent waste streams are being valorized in these projects and energy system integration is being pursued. Inspired by the industrial symbiosis literature, we analyzed how internal, regional, and long-distance symbiotic collaboration is realized within these cases and found them to be very different in terms of the energy carrier produced, the current development stage, and the access to appropriate energy infrastructure. This paper concludes that the co-location of PtX technology near biogas plants would provide a great opportunity for the integration of the produced energy carriers and waste streams into the existing energy system and, hence, could assist in stabilizing fluctuating renewable energy sources to enable their more efficient use in the energy system.

Suggested Citation

  • Rikke Lybæk & Tyge Kjær, 2023. "Valorizing the Input and Output Waste Streams from Three PtX Case Studies in Denmark—Adopting a Symbiotic Approach," Waste, MDPI, vol. 1(4), pages 1-17, October.
  • Handle: RePEc:gam:jwaste:v:1:y:2023:i:4:p:51-900:d:1254185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-0391/1/4/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-0391/1/4/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Gea-Bermúdez & Lena Kitzing & Matti Koivisto & Kaushik Das & Juan Pablo Murcia León & Poul Sørensen, 2022. "The Value of Sector Coupling for the Development of Offshore Power Grids," Energies, MDPI, vol. 15(3), pages 1-21, January.
    2. Frank, Elimar & Gorre, Jachin & Ruoss, Fabian & Friedl, Markus J., 2018. "Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems," Applied Energy, Elsevier, vol. 218(C), pages 217-231.
    3. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Diogo Ferraz & Fernanda P. S. Falguera & Enzo B. Mariano & Dominik Hartmann, 2021. "Linking Economic Complexity, Diversification, and Industrial Policy with Sustainable Development: A Structured Literature Review," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    3. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    4. Eleonora Annunziata & Francesco Rizzi & Tiberio Daddi & Marco Frey, 2019. "Business models for interfirm energy cooperation in industrial parks: A possible taxonomy," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 133-148.
    5. Tran Thu Trang & Simon R. Bush & Judith van Leeuwen, 2023. "Enhancing institutional capacity in a centralized state: The case of industrial water use efficiency in Vietnam," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 210-222, February.
    6. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    7. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability, Springer, vol. 1(2), pages 507-523, September.
    8. Doryn Negesa & Wei Cong & Lei Cheng & Lei Shi, 2022. "Development of eco‐industrial parks in Ethiopia: The case of Hawassa Industrial Park," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1078-1093, June.
    9. Anna Gatzioura & Miquel Sànchez-Marrè & Karina Gibert, 2019. "A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks," Energies, MDPI, vol. 12(18), pages 1-24, September.
    10. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    11. Fortuna, Lorena M. & Diyamandoglu, Vasil, 2015. "NYC WasteMatch – An online facilitated materials exchange as a tool for pollution prevention," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 122-131.
    12. Yuan Yuan & Xintong Sun & Ning Liu, 2022. "Measuring structural characteristics and evolutionary patterns of an industrial carbon footprint network: A social network analysis approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S2), pages 159-180, November.
    13. João Pinto & Rui Boavida-Dias & Henrique A. Matos & João Azevedo, 2022. "Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    14. Wisdom Kanda & Martin Geissdoerfer & Olof Hjelm, 2021. "From circular business models to circular business ecosystems," Business Strategy and the Environment, Wiley Blackwell, vol. 30(6), pages 2814-2829, September.
    15. Alfred Posch & Abhishek Agarwal & Peter Strachan, 2011. "Editorial: Managing Industrial Symbiosis (IS) Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 421-427, November.
    16. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    17. Taskhiri, Mohammad Sadegh & Tan, Raymond R. & Chiu, Anthony S.F., 2011. "Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 730-737.
    18. J. Rincón-Moreno & M. Ormazábal & C. Jaca, 2022. "Stakeholder Perspectives in Transitioning to a Local Circular Economy: a Case Study in Spain," Circular Economy and Sustainability, Springer, vol. 2(2), pages 693-711, June.
    19. Noorlailie Soewarno & Bambang Tjahjadi, 2020. "Eco-oriented culture and financial performance: roles of innovation strategy and eco-oriented continuous improvement in manufacturing state-owned enterprises, Indonesia," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 341-359, December.
    20. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:1:y:2023:i:4:p:51-900:d:1254185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.