IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7660-d680265.html
   My bibliography  Save this article

Heat Recovery from a PtSNG Plant Coupled with Wind Energy

Author

Listed:
  • Daniele Candelaresi

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino 03043, Italy)

  • Linda Moretti

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino 03043, Italy)

  • Alessandra Perna

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino 03043, Italy)

  • Giuseppe Spazzafumo

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino 03043, Italy)

Abstract

Power to substitute natural gas (PtSNG) is a promising technology to store intermittent renewable electricity as synthetic fuel. Power surplus on the electric grid is converted to hydrogen via water electrolysis and then to SNG via CO 2 methanation. The SNG produced can be directly injected into the natural gas infrastructure for long-term and large-scale energy storage. Because of the fluctuating behaviour of the input energy source, the overall annual plant efficiency and SNG production are affected by the plant operation time and the standby strategy chosen. The re-use of internal (waste) heat for satisfying the energy requirements during critical moments can be crucial to achieving high annual efficiencies. In this study, the heat recovery from a PtSNG plant coupled with wind energy, based on proton exchange membrane electrolysis, adiabatic fixed bed methanation and membrane technology for SNG upgrading, is investigated. The proposed thermal recovery strategy involves the waste heat available from the methanation unit during the operation hours being accumulated by means of a two-tanks diathermic oil circuit. The stored heat is used to compensate for the heat losses of methanation reactors, during the hot-standby state. Two options to maintain the reactors at operating temperature have been assessed. The first requires that the diathermic oil transfers heat to a hydrogen stream, which is used to flush the reactors in order to guarantee the hot-standby conditions. The second option entails that the stored heat being recovered for electricity production through an Organic Rankine Cycle. The electricity produced is used to compensate the reactors heat losses by using electrical trace heating during the hot-standby hours, as well as to supply energy to ancillary equipment. The aim of the paper is to evaluate the technical feasibility of the proposed heat recovery strategies and how they impact on the annual plant performances. The results showed that the annual efficiencies on an LHV basis were found to be 44.0% and 44.3% for the thermal storage and electrical storage configurations, respectively.

Suggested Citation

  • Daniele Candelaresi & Linda Moretti & Alessandra Perna & Giuseppe Spazzafumo, 2021. "Heat Recovery from a PtSNG Plant Coupled with Wind Energy," Energies, MDPI, vol. 14(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7660-:d:680265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    2. Frank, Elimar & Gorre, Jachin & Ruoss, Fabian & Friedl, Markus J., 2018. "Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems," Applied Energy, Elsevier, vol. 218(C), pages 217-231.
    3. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    4. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Luca Pinciroli & Piero Baraldi & Guido Ballabio & Michele Compare & Enrico Zio, 2021. "Deep Reinforcement Learning Based on Proximal Policy Optimization for the Maintenance of a Wind Farm with Multiple Crews," Energies, MDPI, vol. 14(20), pages 1-17, October.
    6. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    7. Sebastian Fendt & Alexander Buttler & Matthias Gaderer & Hartmut Spliethoff, 2016. "Comparison of synthetic natural gas production pathways for the storage of renewable energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 327-350, May.
    8. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    2. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    3. Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
    4. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    6. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    7. Salomone, Fabio & Marocco, Paolo & Ferrario, Daniele & Lanzini, Andrea & Fino, Debora & Bensaid, Samir & Santarelli, Massimo, 2023. "Process simulation and energy analysis of synthetic natural gas production from water electrolysis and CO2 capture in a waste incinerator," Applied Energy, Elsevier, vol. 343(C).
    8. Qi, Meng & Lee, Jaewon & Hong, Seokyoung & Kim, Jeongdong & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing," Energy, Elsevier, vol. 256(C).
    9. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    10. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    11. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    12. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    13. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    14. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    15. Szabolcs Szima & Calin-Cristian Cormos, 2021. "CO 2 Utilization Technologies: A Techno-Economic Analysis for Synthetic Natural Gas Production," Energies, MDPI, vol. 14(5), pages 1-18, February.
    16. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    17. Fonder, Michaël & Counotte, Pierre & Dachet, Victor & de Séjournet, Jehan & Ernst, Damien, 2024. "Synthetic methane for closing the carbon loop: Comparative study of three carbon sources for remote carbon-neutral fuel synthetization," Applied Energy, Elsevier, vol. 358(C).
    18. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    19. Rishabh Agarwal, 2022. "Economic Analysis of Renewable Power-to-Gas in Norway," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    20. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7660-:d:680265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.