IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2830-d761230.html
   My bibliography  Save this article

Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector

Author

Listed:
  • João Pinto

    (Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • Rui Boavida-Dias

    (Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal)

  • Henrique A. Matos

    (CERENA, DEQ, Instituto Superior Técnico—Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • João Azevedo

    (Department of Innovation & Technology Transfer, FEUGA, Campus Universitário Plaza Miralles, Local A2, 36310 Vigo, Spain)

Abstract

The meat industry generates a large amount of animal by-products not only derived from the slaughter process but also due to the losses and waste of meat products along the supply chain, contributing to the world’s food loss and waste problem. Yearly, 1.7 Mt of meat in the European retail sector and 20% of meat for consumption is wasted in this sector of the supply chain. Therefore, the aim of this paper was to find and evaluate alternatives for the valorisation of agri-food residues, more specifically the meat waste from the food retail sector, through a technological perspective. Thus, we delve into the industrial processes already implemented and the emerging procedures that use muscle, bones and fats by-products from poultry, cattle and pork as the main raw materials in order to identify and characterise them. The results indicate that in addition to the current destinations—landfill, incineration and the rendering process—these animal by-products can be incorporated in the production of biodiesel, food formulations, pharmaceuticals, fertilisers and biogas through an industrial symbiosis approach. Consequently, the several valorisation processes and procedures identified not only suggest an increase in concern about the impacts of the disposal of these materials, but also highlight the potential associated with the use of animal by-products as raw material to obtain added-value products.

Suggested Citation

  • João Pinto & Rui Boavida-Dias & Henrique A. Matos & João Azevedo, 2022. "Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2830-:d:761230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engstrom, Rebecka & Carlsson-Kanyama, Annika, 2004. "Food losses in food service institutions Examples from Sweden," Food Policy, Elsevier, vol. 29(3), pages 203-213, June.
    2. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    3. Edward Someus & Massimo Pugliese, 2018. "Concentrated Phosphorus Recovery from Food Grade Animal Bones," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    4. Eriksson, Mattias & Strid, Ingrid & Hansson, Per-Anders, 2016. "Food waste reduction in supermarkets – Net costs and benefits of reduced storage temperature," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 73-81.
    5. Cicatiello, Clara & Franco, Silvio & Pancino, Barbara & Blasi, Emanuele & Falasconi, Luca, 2017. "The dark side of retail food waste: Evidences from in-store data," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 273-281.
    6. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    7. Eriksson, Mattias & Strid, Ingrid & Hansson, Per-Anders, 2014. "Waste of organic and conventional meat and dairy products—A case study from Swedish retail," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 44-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability, Springer, vol. 1(2), pages 507-523, September.
    2. EiÄ aitÄ—, Ovidija & Baležentis, Tomas & RibaÅ¡auskienÄ—, Erika & MorkÅ«nas, Mangirdas & MelnikienÄ—, Rasa & Å treimikienÄ—, Dalia, 2022. "Food waste in the retail sector: A survey-based evidence from Central and Eastern Europe," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    3. Anna Gatzioura & Miquel Sànchez-Marrè & Karina Gibert, 2019. "A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks," Energies, MDPI, vol. 12(18), pages 1-24, September.
    4. Fortuna, Lorena M. & Diyamandoglu, Vasil, 2015. "NYC WasteMatch – An online facilitated materials exchange as a tool for pollution prevention," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 122-131.
    5. Pauline Bergström & Christopher Malefors & Ingrid Strid & Ole Jørgen Hanssen & Mattias Eriksson, 2020. "Sustainability Assessment of Food Redistribution Initiatives in Sweden," Resources, MDPI, vol. 9(3), pages 1-27, March.
    6. Beullens, Patrick & Ghiami, Yousef, 2022. "Waste reduction in the supply chain of a deteriorating food item – Impact of supply structure on retailer performance," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1017-1034.
    7. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    8. Glen D. Corder & Artem Golev & Julian Fyfe & Sarah King, 2014. "The Status of Industrial Ecology in Australia: Barriers and Enablers," Resources, MDPI, vol. 3(2), pages 1-22, March.
    9. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    10. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability, Springer, vol. 2(2), pages 669-692, June.
    11. Yang Liu & Peng Cheng & Li Hu, 2022. "How do justice and top management beliefs matter in industrial symbiosis collaboration: An exploratory study from China," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 891-906, June.
    12. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    13. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    14. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    15. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    16. Fabio Iannone & Francesco Testa & Tiberio Daddi & Marco Frey & Giulia Casamento, 2019. "The role of Green Public Procurement in Circular Economy policies: An international comparison," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 149-170.
    17. Lucija Ažman Momirski & Barbara Mušič & Boštjan Cotič, 2021. "Urban Strategies Enabling Industrial and Urban Symbiosis: The Case of Slovenia," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    18. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    19. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    20. Cicatiello, Clara & Franco, Silvio & Pancino, Barbara & Blasi, Emanuele & Falasconi, Luca, 2017. "The dark side of retail food waste: Evidences from in-store data," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 273-281.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2830-:d:761230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.