IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v110y2019icp266-277.html
   My bibliography  Save this article

Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings

Author

Listed:
  • Re Cecconi, F.
  • Moretti, N.
  • Tagliabue, L.C.

Abstract

School buildings in Italy are outdated, in critical maintenance conditions and they often perform below acceptable service levels and quality standards. Nevertheless, data supporting renovation policies are missing or very expensive to be obtained. The paper presents a method for evaluating building's energy savings potential, using the Building Energy Certification (Certificazione Energetica degli Edifici - CENED) open database. The aim of the research concerns the development of a data-driven set of methods, based on the use of open data, machine learning (ML) and Geographic Information Systems (GIS) to support regional energy retrofit policies on school buildings. The main advantage concerns the possibility to predict the post-retrofit energy savings, avoiding the expensive on-site Condition Assessment (CA) phase. Data have been first clustered to identify the most common thermo-physical properties of the envelope, then three retrofit scenarios have been defined, to allow the retrofit of homogeneous types of buildings. The energy saving potentials have been evaluated through the implementation of eight Artificial Neural Networks. Ultimately, data have been geolocated and further processed to support the definition of the energy retrofit policies for the most critical regional areas. The Lombardy region has been chosen as case study to test the robustness of the proposed methods. The results of the case study proved that school buildings energy retrofit policies can be supported and defined using available open data, ML and GIS. The future developments of the research concern the further integration of GIS for retrofit cost assessment and scenario analysis.

Suggested Citation

  • Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
  • Handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:266-277
    DOI: 10.1016/j.rser.2019.04.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    2. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    3. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    4. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Kim, Jimin, 2016. "An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 822-837.
    5. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    6. Hou, Zhijian & Lian, Zhiwei & Yao, Ye & Yuan, Xinjian, 2006. "Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique," Applied Energy, Elsevier, vol. 83(9), pages 1033-1046, September.
    7. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    8. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Aruta & Fabrizio Ascione & Nicola Bianco & Teresa Iovane & Margherita Mastellone, 2023. "Assessment of the Incentive Rate to Favor the Energy Retrofit of Public Buildings: A Comprehensive Approach for an Italian University Facility," Energies, MDPI, vol. 16(11), pages 1-16, June.
    2. Ma, Dingyuan & Li, Xiaodong & Lin, Borong & Zhu, Yimin, 2023. "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives," Energy, Elsevier, vol. 263(PB).
    3. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    5. Miroslav Variny, 2021. "Comment on Pietrapertosa et al. How to Prioritize Energy Efficiency Intervention in Municipal Public Buildings to Decrease CO 2 Emissions? A Case Study from Italy. Int. J. Environ. Res. Public Health ," IJERPH, MDPI, vol. 18(8), pages 1-12, April.
    6. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Jenny von Platten & Claes Sandels & Kajsa Jörgensson & Viktor Karlsson & Mikael Mangold & Kristina Mjörnell, 2020. "Using Machine Learning to Enrich Building Databases—Methods for Tailored Energy Retrofits," Energies, MDPI, vol. 13(10), pages 1-22, May.
    9. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    2. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    3. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    4. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Cha, Seung Hyun, 2018. "An integrated model for estimating the techno-economic performance of the distributed solar generation system on building façades: Focused on energy demand and supply," Applied Energy, Elsevier, vol. 228(C), pages 1071-1090.
    5. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    6. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    7. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    8. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    9. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    10. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    11. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    12. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    13. Hong, Taehoon & Kim, Jimin & Lee, Minhyun, 2019. "A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance," Energy, Elsevier, vol. 174(C), pages 823-834.
    14. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
    15. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    16. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    17. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
    19. Kwok Wai Mui & Ling Tim Wong & Manoj Kumar Satheesan & Anjana Balachandran, 2021. "A Hybrid Simulation Model to Predict the Cooling Energy Consumption for Residential Housing in Hong Kong," Energies, MDPI, vol. 14(16), pages 1-18, August.
    20. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:266-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.