IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p1010-d101236.html
   My bibliography  Save this article

iPathology: Robotic Applications and Management of Plants and Plant Diseases

Author

Listed:
  • Yiannis Ampatzidis

    (Department of Agricultural and Biological Engineering, University of Florida, Southwest Florida Research and Education Center, 2685 FL-29, Immokalee, FL 34142, USA
    Department of Physics and Engineering, California State University, 9001 Stockdale Highway, Bakersfield, CA 93311, USA)

  • Luigi De Bellis

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, 73100 Lecce, Italy)

  • Andrea Luvisi

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Monteroni, 73100 Lecce, Italy)

Abstract

The rapid development of new technologies and the changing landscape of the online world (e.g., Internet of Things (IoT), Internet of All, cloud-based solutions) provide a unique opportunity for developing automated and robotic systems for urban farming, agriculture, and forestry. Technological advances in machine vision, global positioning systems, laser technologies, actuators, and mechatronics have enabled the development and implementation of robotic systems and intelligent technologies for precision agriculture. Herein, we present and review robotic applications on plant pathology and management, and emerging agricultural technologies for intra-urban agriculture. Greenhouse advanced management systems and technologies have been greatly developed in the last years, integrating IoT and WSN (Wireless Sensor Network). Machine learning, machine vision, and AI (Artificial Intelligence) have been utilized and applied in agriculture for automated and robotic farming. Intelligence technologies, using machine vision/learning, have been developed not only for planting, irrigation, weeding (to some extent), pruning, and harvesting, but also for plant disease detection and identification. However, plant disease detection still represents an intriguing challenge, for both abiotic and biotic stress. Many recognition methods and technologies for identifying plant disease symptoms have been successfully developed; still, the majority of them require a controlled environment for data acquisition to avoid false positives. Machine learning methods (e.g., deep and transfer learning) present promising results for improving image processing and plant symptom identification. Nevertheless, diagnostic specificity is a challenge for microorganism control and should drive the development of mechatronics and robotic solutions for disease management.

Suggested Citation

  • Yiannis Ampatzidis & Luigi De Bellis & Andrea Luvisi, 2017. "iPathology: Robotic Applications and Management of Plants and Plant Diseases," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1010-:d:101236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/1010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/1010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarah Taylor Lovell, 2010. "Multifunctional Urban Agriculture for Sustainable Land Use Planning in the United States," Sustainability, MDPI, vol. 2(8), pages 1-24, August.
    2. Fountas, S. & Wulfsohn, D. & Blackmore, B.S. & Jacobsen, H.L. & Pedersen, S.M., 2006. "A model of decision-making and information flows for information-intensive agriculture," Agricultural Systems, Elsevier, vol. 87(2), pages 192-210, February.
    3. Andrea Luvisi & Francesca Nicolì & Luigi De Bellis, 2017. "Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome," Sustainability, MDPI, vol. 9(4), pages 1-19, April.
    4. Eric Williams, 2011. "Environmental effects of information and communications technologies," Nature, Nature, vol. 479(7373), pages 354-358, November.
    5. Andrea Luvisi & Yiannis G. Ampatzidis & Luigi De Bellis, 2016. "Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Rutuja Rajendra Patil & Sumit Kumar & Shwetambari Chiwhane & Ruchi Rani & Sanjeev Kumar Pippal, 2022. "An Artificial-Intelligence-Based Novel Rice Grade Model for Severity Estimation of Rice Diseases," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    3. Dorijan Radočaj & Ivan Plaščak & Mladen Jurišić, 2023. "Global Navigation Satellite Systems as State-of-the-Art Solutions in Precision Agriculture: A Review of Studies Indexed in the Web of Science," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    4. Yiannis Ampatzidis & Josh Kiner & Reza Abdolee & Louise Ferguson, 2018. "Voice-Controlled and Wireless Solid Set Canopy Delivery (VCW-SSCD) System for Mist-Cooling," Sustainability, MDPI, vol. 10(2), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    2. Ishak Norziha & Abdullah Rosazlin & Rosli Noor Sharina Mohd & Majid Hazreenbdul & Halim Nur Sa’adah Abdul & Ariffin Fazilah, 2022. "Challenges of Urban Garden Initiatives for Food Security in Kuala Lumpur, Malaysia," Quaestiones Geographicae, Sciendo, vol. 41(4), pages 57-72, December.
    3. Wojciech Sroka & Jaroslaw Mikolajczyk & Tomasz Wojewodzic & Boguslawa Kwoczynska, 2018. "Agricultural Land vs. Urbanisation in Chosen Polish Metropolitan Areas: A Spatial Analysis Based on Regression Trees," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    4. Agnieszka Stacherzak & Maria Hełdak & Ladislav Hájek & Katarzyna Przybyła, 2019. "State Interventionism in Agricultural Land Turnover in Poland," Sustainability, MDPI, vol. 11(6), pages 1-13, March.
    5. Ed Burton & David John Edwards & Chris Roberts & Nicholas Chileshe & Joseph H. K. Lai, 2021. "Delineating the Implications of Dispersing Teams and Teleworking in an Agile UK Construction Sector," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    6. Byung Moo Lee, 2017. "Energy Efficiency Gain of Cellular Base Stations with Large-Scale Antenna Systems for Green Information and Communication Technology," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    7. Kassis, Grâce & Bertrand, Nathalie, 2022. "Institutional changes in farmland governance emerging from a collective land preservation procedure upholding local food projects: Evidence from a French case study," Land Use Policy, Elsevier, vol. 120(C).
    8. Devi Buehler & Ranka Junge, 2016. "Global Trends and Current Status of Commercial Urban Rooftop Farming," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    9. Tatevik Yezekyan & Marco Benetti & Giannantonio Armentano & Samuele Trestini & Luigi Sartori & Francesco Marinello, 2021. "Definition of Reference Models for Power, Mass, Working Width, and Price for Tillage Implements," Agriculture, MDPI, vol. 11(3), pages 1-15, February.
    10. Yuan Ma & Heng Liang & Han Li & Yaping Liao, 2020. "Towards the Healthy Community: Residents’ Perceptions of Integrating Urban Agriculture into the Old Community Micro-Transformation in Guangzhou, China," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    11. Muhammad Mumtaz Khan & Muhammad Tahir Akram & Rhonda Janke & Rashad Waseem Khan Qadri & Abdullah Mohammed Al-Sadi & Aitazaz A. Farooque, 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    12. Wojciech Sroka & Michał Dudek & Tomasz Wojewodzic & Karol Król, 2019. "Generational Changes in Agriculture: The Influence of Farm Characteristics and Socio-Economic Factors," Agriculture, MDPI, vol. 9(12), pages 1-27, December.
    13. Nuthall, Peter L., 2012. "The intuitive world of farmers – The case of grazing management systems and experts," Agricultural Systems, Elsevier, vol. 107(C), pages 65-73.
    14. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    15. Ali Noudoostbeni & Kiran Kaur & Hashem Salarzadeh Jenatabadi, 2018. "A Comparison of Structural Equation Modeling Approaches with DeLone & McLean’s Model: A Case Study of Radio-Frequency Identification User Satisfaction in Malaysian University Libraries," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    16. Jahrl, Ingrid & Moschitz, Heidrun & Cavin, Joëlle Salomon, 2021. "The role of food gardening in addressing urban sustainability – A new framework for analysing policy approaches," Land Use Policy, Elsevier, vol. 108(C).
    17. Zehua Wang & Fachao Liang & Sheng-Hau Lin, 2023. "Can socially sustainable development be achieved through homestead withdrawal? A hybrid multiple-attributes decision analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    18. Pei-Yi Lin & Ching Sing Chai & Morris Siu-Yung Jong, 2019. "A PISA-2015 Comparative Meta-Analysis between Singapore and Finland: Relations of Students’ Interest in Science, Perceived ICT Competence, and Environmental Awareness and Optimism," IJERPH, MDPI, vol. 16(24), pages 1-15, December.
    19. Peng, Hua-Rong & Qin, Xiong-Feng, 2024. "Digitalization as a trigger for a rebound effect of electricity use," Energy, Elsevier, vol. 300(C).
    20. Asare, Eric & Segarra, Eduardo, 2017. "Adoption and Extent of Adoption of Georeferenced Grid Soil Sampling Technology by Cotton Producers in the Southern US," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252773, Southern Agricultural Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1010-:d:101236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.