IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2022i1p47-d1013225.html
   My bibliography  Save this article

An Artificial-Intelligence-Based Novel Rice Grade Model for Severity Estimation of Rice Diseases

Author

Listed:
  • Rutuja Rajendra Patil

    (Department of Computer Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India)

  • Sumit Kumar

    (Department of Electronics and Telecommunication, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India)

  • Shwetambari Chiwhane

    (Department of Computer Science, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India)

  • Ruchi Rani

    (Department of Computer Science, Indian Institute of Information Technology, Kottayam 686635, Kerala, India)

  • Sanjeev Kumar Pippal

    (Department of Technology, NSBT, MGM University, Aurangabad 431005, Maharashtra, India)

Abstract

The pathogens such as fungi and bacteria can lead to rice diseases that can drastically impair crop production. Because the illness is difficult to control on a broad scale, crop field monitoring is one of the most effective methods of control. It allows for early detection of the disease and the implementation of preventative measures. Disease severity estimation based on digital picture analysis, where the pictures are obtained from the rice field using mobile devices, is one of the most effective control strategies. This paper offers a method for quantifying the severity of three rice crop diseases (brown spot, blast, and bacterial blight) that can determine the stage of plant disease. A total of 1200 images of rice illnesses and healthy images make up the input dataset. With the help of agricultural experts, the diseased zone was labeled according to the disease type using the Make Sense tool. More than 75% of the images in the dataset correspond to one disease label, healthy plants represent more than 15%, and multiple diseases represent 5% of the images labeled. This paper proposes a novel artificial intelligence rice grade model that uses an optimized faster-region-based convolutional neural network (FRCNN) approach to calculate the area of leaf instances and the infected regions. EfficientNet-B0 architecture was used as a backbone as the network shows the best accuracy (96.43%). The performance was compared with the CNN architectures: VGG16, ResNet101, and MobileNet. The model evaluation parameters used to measure the accuracy are positive predictive value, sensitivity, and intersection over union. This severity estimation method can be further deployed as a tool that allows farmers to obtain perfect predictions of the disease severity level based on lesions in the field conditions and produce crops more organically.

Suggested Citation

  • Rutuja Rajendra Patil & Sumit Kumar & Shwetambari Chiwhane & Ruchi Rani & Sanjeev Kumar Pippal, 2022. "An Artificial-Intelligence-Based Novel Rice Grade Model for Severity Estimation of Rice Diseases," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:47-:d:1013225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiannis Ampatzidis & Luigi De Bellis & Andrea Luvisi, 2017. "iPathology: Robotic Applications and Management of Plants and Plant Diseases," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    2. Shuo Chen & Kefei Zhang & Yindi Zhao & Yaqin Sun & Wei Ban & Yu Chen & Huifu Zhuang & Xuewei Zhang & Jinxiang Liu & Tao Yang, 2021. "An Approach for Rice Bacterial Leaf Streak Disease Segmentation and Disease Severity Estimation," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingfeng Huang & Guoqin Xu & Junyu Li & Jianping Huang, 2021. "A Method for Segmenting Disease Lesions of Maize Leaves in Real Time Using Attention YOLACT++," Agriculture, MDPI, vol. 11(12), pages 1-14, December.
    2. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Dorijan Radočaj & Ivan Plaščak & Mladen Jurišić, 2023. "Global Navigation Satellite Systems as State-of-the-Art Solutions in Precision Agriculture: A Review of Studies Indexed in the Web of Science," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    4. Changguang Feng & Minlan Jiang & Qi Huang & Lingguo Zeng & Changjiang Zhang & Yulong Fan, 2022. "A Lightweight Real-Time Rice Blast Disease Segmentation Method Based on DFFANet," Agriculture, MDPI, vol. 12(10), pages 1-12, September.
    5. Yiannis Ampatzidis & Josh Kiner & Reza Abdolee & Louise Ferguson, 2018. "Voice-Controlled and Wireless Solid Set Canopy Delivery (VCW-SSCD) System for Mist-Cooling," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    6. Md. Mehedi Hasan & Touficur Rahman & A. F. M. Shahab Uddin & Syed Md. Galib & Mostafijur Rahman Akhond & Md. Jashim Uddin & Md. Alam Hossain, 2023. "Enhancing Rice Crop Management: Disease Classification Using Convolutional Neural Networks and Mobile Application Integration," Agriculture, MDPI, vol. 13(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:47-:d:1013225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.