IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2369-d123412.html
   My bibliography  Save this article

Forage Options for Dairy Farms with Reduced Water Availability in the Southern Murray Darling Basin of Australia

Author

Listed:
  • Mary-Jane Rogers

    (Agriculture Victoria, Department of Economic Development, Jobs Transport and Resources, Private Bag, 255 Ferguson Rd., Tatura, VIC 3616, Australia)

  • Alister Lawson

    (Agriculture Victoria, Department of Economic Development, Jobs Transport and Resources, Private Bag, 255 Ferguson Rd., Tatura, VIC 3616, Australia)

  • Kevin Kelly

    (Agriculture Victoria, Department of Economic Development, Jobs Transport and Resources, Private Bag, 255 Ferguson Rd., Tatura, VIC 3616, Australia)

Abstract

The dairy industry in the southern Murray Darling Basin region of Australia is a major consumer of irrigation water because rainfall is low relative to evapotranspiration and the industrys relies heavily on irrigated temperate pastures and fodder crops. Water reforms, and potential climate change scenarios for this region suggest that there will be an overall decline in rainfall and water available for irrigation in the future. For the irrigated dairy industry to remain economically viable, there is a need for dairy farmers to improve the water productivity (WP) of their forage systems and to be able to respond to year-to-year, and within year, variation in water availability. Researchers and dairy farmers are evaluating strategies to increase WP. These include: (i) selecting better-adapted species for current and predicted climatic conditions; (ii) using species that can survive and still be productive under reduced irrigation and then recover when full irrigation is restored; (iii) modifying irrigation strategies to reduce water use whilst maintaining WP; and (iv) grazing management strategies that facilitate the survival during, and recovery after, periods of moisture stress. This review will examine these strategies and discusses their potential to optimise forage production from irrigation water inputs so that the dairy industry in the southern Murray Darling Basin remains viable in the future.

Suggested Citation

  • Mary-Jane Rogers & Alister Lawson & Kevin Kelly, 2017. "Forage Options for Dairy Farms with Reduced Water Availability in the Southern Murray Darling Basin of Australia," Sustainability, MDPI, vol. 9(12), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2369-:d:123412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Greenwood, K.L. & Lawson, A.R. & Kelly, K.B., 2009. "The water balance of irrigated forages in northern Victoria, Australia," Agricultural Water Management, Elsevier, vol. 96(5), pages 847-858, May.
    2. Hanson, Blaine & Putnam, Dan & Snyder, Richard, 2007. "Deficit irrigation of alfalfa as a strategy for providing water for water-short areas," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 73-80, October.
    3. Neal, J.S. & Fulkerson, W.J. & Hacker, R.B., 2011. "Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 759-774, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youzhen Xiang & Haiyang Zou & Fucang Zhang & Shengcai Qiang & You Wu & Shicheng Yan & Haidong Wang & Lifeng Wu & Junliang Fan & Xiukang Wang, 2018. "Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    2. Ntege, Ivan & Kiggundu, Nicholas & Wanyama, Joshua & Nakawuka, Prossie, 2023. "Napier yield response under different irrigation strategies in a tropical setting," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Cristian J. Moscoso & Fernando Ortega-Klose & Alejandra Acuña, 2021. "Are Chilean Pasture Seed End-Users Adopting New Species? Trends and Joinpoint Regression Analysis of the Last 19 Years of Seed Imports," Agriculture, MDPI, vol. 11(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yu & Mullan, Katrina & Biggs, Trent & Caviglia-Harris, Jill L. & Harris, Daniel & Sills, Erin O., 2018. "Do Forests Provide Watershed Services to Local Populations in the Humid Tropics? Evidence from the Brazilian Amazon," 2018 Annual Meeting, August 5-7, Washington, D.C. 274012, Agricultural and Applied Economics Association.
    2. Ma, Shangyu & Yu, Zhenwen & Shi, Yu & Gao, Zhiqiang & Luo, Lanping & Chu, Pengfei & Guo, Zengjiang, 2015. "Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain," Agricultural Water Management, Elsevier, vol. 150(C), pages 9-17.
    3. Kisekka, Isaya & Kandelous, Maziar M. & Sanden, Blake & Hopmans, Jan W., 2019. "Uncertainties in leaching assessment in micro-irrigated fields using water balance approach," Agricultural Water Management, Elsevier, vol. 213(C), pages 107-115.
    4. Wagle, Pradeep & Gowda, Prasanna H. & Northup, Brian K., 2019. "Dynamics of evapotranspiration over a non-irrigated alfalfa field in the Southern Great Plains of the United States," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Srinivasan, M.S. & Measures, Richard & Muller, Carla & Neal, Mark & Rajanayaka, Channa & Shankar, Ude & Elley, Graham, 2021. "Comparing the water use metrics of just-in-case, just-in-time and justified irrigation strategies using a scenario-based tool," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Liu, Minguo & Wang, Zikui & Mu, Le & Xu, Rui & Yang, Huimin, 2021. "Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Benes, S.E. & Adhikari, D.D. & Grattan, S.R. & Snyder, R.L., 2012. "Evapotranspiration potential of forages irrigated with saline-sodic drainage water," Agricultural Water Management, Elsevier, vol. 105(C), pages 1-7.
    8. Wu, Yu & Mullan, Katrina & Biggs, Trent & Caviglia-Harris, Jill & Harris, Daniel W. & Sills, Erin O., 2021. "Do forests provide watershed services for farmers in the humid tropics? Evidence from the Brazilian Amazon," Ecological Economics, Elsevier, vol. 183(C).
    9. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    11. Zonderland-Thomassen, M.A. & Ledgard, S.F., 2012. "Water footprinting – A comparison of methods using New Zealand dairy farming as a case study," Agricultural Systems, Elsevier, vol. 110(C), pages 30-40.
    12. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Jan M. Sitterson & Allan A. Andales & Daniel F. Mooney & Maria Cristina Capurro & Joe E. Brummer, 2023. "Developing a Crop Water Production Function for Alfalfa under Deficit Irrigation: A Case Study in Eastern Colorado," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    14. Xiao, Yu & Zhang, Jing & Jia, Ting Ting & Pang, Xiao Pan & Guo, Zheng Gang, 2015. "Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa)," Agricultural Water Management, Elsevier, vol. 161(C), pages 147-154.
    15. Usha Poudel & Haroon Stephen & Sajjad Ahmad, 2021. "Evaluating Irrigation Performance and Water Productivity Using EEFlux ET and NDVI," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    16. Snyder, R.L. & Pedras, C. & Montazar, A. & Henry, J.M. & Ackley, D., 2015. "Advances in ET-based landscape irrigation management," Agricultural Water Management, Elsevier, vol. 147(C), pages 187-197.
    17. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    18. Xu, He & Liu, Jiahong & Qin, Dayong & Gao, Xuerui & Yan, Jinyue, 2013. "Feasibility analysis of solar irrigation system for pastures conservation in a demonstration area in Inner Mongolia," Applied Energy, Elsevier, vol. 112(C), pages 697-702.
    19. Khalil, Hamidreza Mirzaei & Esfandiari, Mahdi & Shahraki, Javad & Yaghoubi, Morteza, 2016. "Assessment of Water Use Efficiency Indices in Selected Plains of Fars Province, Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 6(2), June.
    20. Qiu, Yuan & Fan, Yaqiong & Chen, Yang & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2021. "Response of dry matter and water use efficiency of alfalfa to water and salinity stress in arid and semiarid regions of Northwest China," Agricultural Water Management, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2369-:d:123412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.