IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic35.html
   My bibliography  Save this article

Dynamics of evapotranspiration over a non-irrigated alfalfa field in the Southern Great Plains of the United States

Author

Listed:
  • Wagle, Pradeep
  • Gowda, Prasanna H.
  • Northup, Brian K.

Abstract

Accurately quantifying the dynamics of evapotranspiration (ET) is crucial for efficient water management and improved water use efficiency. However, details on the magnitudes and annual dynamics of ET with respect to environmental/biophysical factors and harvesting of hay in non-irrigated alfalfa (Medicago sativa L.) are lacking. Using the eddy covariance (EC) technique, daily magnitudes and seasonal/annual dynamics and budgets of ET were quantified from April 2016 to May 2018 over a non-irrigated alfalfa field in central Oklahoma, USA. The field was harvested periodically for hay, and cumulative dry forage yield was approximately 7.5 and 10 t ha−1 in 2016 (dry year) and 2017 (wet year), respectively. Daily ET reached up to 6.9 mm d−1 and 8-day average ET reached up to 5.64 mm d−1. Cumulative seasonal (April-October) ET was 652 mm (∼1.3 times of precipitation) in 2016 and 734 mm (∼0.8 times of precipitation) in 2017. Annual ET in 2017 was ∼900 mm (∼0.8 times of annual precipitation). Optimum air temperature (Ta) and vapor pressure deficit (VPD) for ET were approximately 30 °C and 3 kPa, respectively. Higher forage production was associated with a greater increase (∼22%) in carbon uptake (gross primary production, GPP) than ET (∼13%) in 2017 compared to 2016. Consequently, ecosystem water use efficiency (EWUE) at the seasonal scale (seasonal sums of GPP to ET) was 2.38 and 2.57 g C mm−1 ET in 2016 and 2017, respectively. Despite strong correspondence (R2 = 0.73) between EC-measured ET and Moderate Resolution Imaging Spectroradiometer (MODIS)-derived ET (ETMOD16), the standard ETMOD16 product underestimated ET by 36% compared to EC-measured ET. The MODIS-derived enhanced vegetation index (EVI) and photosynthetically active radiation (PAR) explained 83% of variations in alfalfa ET, indicating the potential of integrating remote sensing observations and climate data to extrapolate site-level alfalfa ET at larger areas.

Suggested Citation

  • Wagle, Pradeep & Gowda, Prasanna H. & Northup, Brian K., 2019. "Dynamics of evapotranspiration over a non-irrigated alfalfa field in the Southern Great Plains of the United States," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:35
    DOI: 10.1016/j.agwat.2019.105727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419303117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuei-An Liou & Sanjib Kumar Kar, 2014. "Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review," Energies, MDPI, vol. 7(5), pages 1-29, April.
    2. Hanson, Blaine & Putnam, Dan & Snyder, Richard, 2007. "Deficit irrigation of alfalfa as a strategy for providing water for water-short areas," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 73-80, October.
    3. Benli, Bogachan & Kodal, Suleyman & Ilbeyi, Adem & Ustun, Haluk, 2006. "Determination of evapotranspiration and basal crop coefficient of alfalfa with a weighing lysimeter," Agricultural Water Management, Elsevier, vol. 81(3), pages 358-370, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Minguo & Wu, Xiaojuan & Yang, Huimin, 2022. "Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Kevin De Haan & Myroslava Khomik & Adam Green & Warren Helgason & Merrin L. Macrae & Mazda Kompanizare & Richard M. Petrone, 2021. "Assessment of Different Water Use Efficiency Calculations for Dominant Forage Crops in the Great Lakes Basin," Agriculture, MDPI, vol. 11(8), pages 1-19, August.
    3. Wu, Wanping & Liu, Minguo & Wu, Xiaojuan & Wang, Zikui & Yang, Huimin, 2022. "Effects of deficit irrigation on nitrogen uptake and soil mineral nitrogen in alfalfa grasslands of the inland arid area of China," Agricultural Water Management, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    2. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    3. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    4. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    5. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    6. Ding, Risheng & Kang, Shaozhong & Li, Fusheng & Zhang, Yanqun & Tong, Ling & Sun, Qingyu, 2010. "Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China," Agricultural Water Management, Elsevier, vol. 98(1), pages 87-95, December.
    7. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Mary-Jane Rogers & Alister Lawson & Kevin Kelly, 2017. "Forage Options for Dairy Farms with Reduced Water Availability in the Southern Murray Darling Basin of Australia," Sustainability, MDPI, vol. 9(12), pages 1-20, December.
    9. Xue, Jingyuan & Fulton, Allan & Kisekka, Isaya, 2021. "Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Liu, Minguo & Wang, Zikui & Mu, Le & Xu, Rui & Yang, Huimin, 2021. "Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China," Agricultural Water Management, Elsevier, vol. 248(C).
    11. Benes, S.E. & Adhikari, D.D. & Grattan, S.R. & Snyder, R.L., 2012. "Evapotranspiration potential of forages irrigated with saline-sodic drainage water," Agricultural Water Management, Elsevier, vol. 105(C), pages 1-7.
    12. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    14. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    15. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    16. Muhammad Arfan, 2022. "Mapping Impact of Farmer’s Organisation on the Equity of Water and Land Productivity: Evidence from Pakistan (Article)," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 61(2), pages 275-294.
    17. Liu, Minguo & Wu, Xiaojuan & Yang, Huimin, 2022. "Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China," Agricultural Water Management, Elsevier, vol. 260(C).
    18. French, Andrew N. & Sanchez, Charles A. & Wirth, Troy & Scott, Andrew & Shields, John W. & Bautista, Eduardo & Saber, Mazin N. & Wisniewski, Elzbieta & Gohardoust, Mohammadreza R., 2023. "Remote sensing of evapotranspiration for irrigated crops at Yuma, Arizona, USA," Agricultural Water Management, Elsevier, vol. 290(C).
    19. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    20. Jan M. Sitterson & Allan A. Andales & Daniel F. Mooney & Maria Cristina Capurro & Joe E. Brummer, 2023. "Developing a Crop Water Production Function for Alfalfa under Deficit Irrigation: A Case Study in Eastern Colorado," Agriculture, MDPI, vol. 13(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.