IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i5p847-858.html
   My bibliography  Save this article

The water balance of irrigated forages in northern Victoria, Australia

Author

Listed:
  • Greenwood, K.L.
  • Lawson, A.R.
  • Kelly, K.B.

Abstract

Knowledge of the components of the water balance - evaporation, transpiration and deep drainage - would be beneficial for targeting productivity improvements for irrigated forages in northern Victoria. We aimed to estimate these components using a simple water balance and the dual crop coefficients provided in FAO-56. Soil water deficits from a field experiment, comparing the water use of six border-check and one spray irrigated forage system, agreed well with the modelled values, except for alfalfa where irrigation intake was restricted. About 85% of the water applied to perennial forages (perennial ryegrass/white clover, tall fescue/white clover and alfalfa) was used for transpiration, 10% for evaporation and 5% was lost as drainage below the root zone. Evaporation was highest from the double-cropped (oats/millet) system (30%) and was 5-25% of the water used by winter-growing annual pastures (Persian clover/Italian ryegrass and both border-check and spray irrigated subterranean clover/Italian ryegrass). The high proportion of water used as transpiration by the perennial forages was due to their high ground cover maintained throughout the year. When compared over similar seasonal conditions, actively growing forages used similar amounts of water, indicating that any increases in water productivity will be mainly due to higher production and/or to matching the growing season of the forage to periods of lower potential evapotranspiration.

Suggested Citation

  • Greenwood, K.L. & Lawson, A.R. & Kelly, K.B., 2009. "The water balance of irrigated forages in northern Victoria, Australia," Agricultural Water Management, Elsevier, vol. 96(5), pages 847-858, May.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:847-858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00311-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qassim, Abdi & Dunin, Frank & Bethune, Matthew, 2008. "Water balance of centre pivot irrigated pasture in northern Victoria, Australia," Agricultural Water Management, Elsevier, vol. 95(5), pages 566-574, May.
    2. Vu, Son Hong & Watanabe, Hirozumi & Takagi, Kazuhiro, 2005. "Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan," Agricultural Water Management, Elsevier, vol. 76(3), pages 195-210, August.
    3. Satti, Sudheer R. & Jacobs, Jennifer M. & Irmak, Suat, 2004. "Agricultural water management in a humid region: sensitivity to climate, soil and crop parameters," Agricultural Water Management, Elsevier, vol. 70(1), pages 51-65, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mary-Jane Rogers & Alister Lawson & Kevin Kelly, 2017. "Forage Options for Dairy Farms with Reduced Water Availability in the Southern Murray Darling Basin of Australia," Sustainability, MDPI, vol. 9(12), pages 1-20, December.
    2. Pavel Kovář & Darina Vaššová, 2010. "Impact of Arable Land to Grassland Conversion on the Vegetation-period Water Balance of a Small Agricultural Catchment (Němčický Stream)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 5(4), pages 128-138.
    3. Kisekka, Isaya & Kandelous, Maziar M. & Sanden, Blake & Hopmans, Jan W., 2019. "Uncertainties in leaching assessment in micro-irrigated fields using water balance approach," Agricultural Water Management, Elsevier, vol. 213(C), pages 107-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    2. Kondo, Kei & Boulange, Julien & Hiramatsu, Kazuaki & Thai, Phong K. & Inoue, Tsuyoshi & Watanabe, Hirozumi, 2017. "Development and application of a dynamic in-river agrochemical fate and transport model for simulating behavior of rice herbicide in urbanizing catchment," Agricultural Water Management, Elsevier, vol. 193(C), pages 102-115.
    3. Jing Zhang & Ke Wang & Xinming Chen & Wenjuan Zhu, 2011. "Combining a Fuzzy Matter-Element Model with a Geographic Information System in Eco-Environmental Sensitivity and Distribution of Land Use Planning," IJERPH, MDPI, vol. 8(4), pages 1-16, April.
    4. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    5. Kisekka, Isaya & Kandelous, Maziar M. & Sanden, Blake & Hopmans, Jan W., 2019. "Uncertainties in leaching assessment in micro-irrigated fields using water balance approach," Agricultural Water Management, Elsevier, vol. 213(C), pages 107-115.
    6. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Antonopoulos, Vassilis Z., 2010. "Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece," Agricultural Water Management, Elsevier, vol. 98(2), pages 321-330, December.
    8. Ryota Tsuchiya & Tasuku Kato & Jaehak Jeong & Jeffrey G. Arnold, 2018. "Development of SWAT-Paddy for Simulating Lowland Paddy Fields," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    9. Frank, F.C. & Viglizzo, E.F., 2012. "Water use in rain-fed farming at different scales in the Pampas of Argentina," Agricultural Systems, Elsevier, vol. 109(C), pages 35-42.
    10. Choudhury, B.U. & Singh, Anil Kumar, 2016. "Estimation of crop coefficient of irrigated transplanted puddled rice by field scale water balance in the semi-arid Indo-Gangetic Plains, India," Agricultural Water Management, Elsevier, vol. 176(C), pages 142-150.
    11. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    12. Kayatz, Benjamin & Baroni, Gabriele & Hillier, Jon & Lüdtke, Stefan & Freese, Dirk & Wattenbach, Martin, 2024. "Supporting decision-making in agricultural water management under data scarcity using global datasets – chances, limits and potential improvements," Agricultural Water Management, Elsevier, vol. 296(C).
    13. Maniruzzaman, M. & Talukder, M.S.U. & Khan, M.H. & Biswas, J.C. & Nemes, A., 2015. "Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 331-340.
    14. Dalton, William & Armstrong, David, 2012. "Economic analysis of irrigation modernisation connection options for a dairy farm in northern Victoria," AFBM Journal, Australasian Farm Business Management Network, vol. 9(1), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:847-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.