IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2288-d122733.html
   My bibliography  Save this article

Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China

Author

Listed:
  • Shilei Lu

    (School of Environment Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China)

  • Ran Wang

    (School of Environment Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China)

  • Shaoqun Zheng

    (School of Environment Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China)

Abstract

The development of green building is an important way to solve the environmental problems of China’s construction industry. Energy conservation and energy utilization are important for the green building evaluation criteria (GBEC). The objective of this study is to evaluate the quantitative relationship between building shape parameter, envelope parameters, shading system, courtyard and the energy consumption (EC) as well as the impact on indoor thermal comfort of rural residential buildings in the hot summer and warm winter zone (HWWZ). Taking Quanzhou (Fujian Province of China) as an example, based on the field investigation, EnergyPlus is used to build the building performance model. In addition, the classical particle swarm optimization algorithm in GenOpt software is used to optimize the various factors affecting the EC. Single-objective optimization has provided guidance to the multi-dimensional optimization and regression analysis is used to find the effects of a single input variable on an output variable. Results shows that the energy saving rate of an optimized rural residence is about 26–30% corresponding to the existing rural residence. Moreover, the payback period is about 20 years. A simple case study is used to demonstrate the accuracy of the proposed optimization analysis. The optimization can be used to guide the design of new rural construction in the area and the energy saving transformation of the existing rural houses, which can help to achieve the purpose of energy saving and comfort.

Suggested Citation

  • Shilei Lu & Ran Wang & Shaoqun Zheng, 2017. "Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China," Sustainability, MDPI, vol. 9(12), pages 1-30, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2288-:d:122733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    2. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    3. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra & Crutescu, Marin & Dobrovicescu, Alexandru & Tsatsaronis, George, 2011. "Modeling, validation and time-dependent simulation of the first large passive building in Romania," Renewable Energy, Elsevier, vol. 36(1), pages 142-157.
    4. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    5. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    6. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    7. Mavromatidis, Lazaros Elias & Marsault, Xavier & Lequay, Hervé, 2014. "Daylight factor estimation at an early design stage to reduce buildings' energy consumption due to artificial lighting: A numerical approach based on Doehlert and Box–Behnken designs," Energy, Elsevier, vol. 65(C), pages 488-502.
    8. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    9. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    10. Andre Feliks Setiawan & Tzu-Ling Huang & Chun-Ta Tzeng & Chi-Ming Lai, 2015. "The Effects of Envelope Design Alternatives on the Energy Consumption of Residential Houses in Indonesia," Energies, MDPI, vol. 8(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinan Li & Neng Zhu & Beibei Qin, 2019. "Target Setting Outlook for New Residential Building Energy Efficiency Promotion in China: A Frontline Perspective Using Delphi," Energies, MDPI, vol. 12(9), pages 1-29, April.
    2. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    3. Zhaoxia Wang & Jing Zhao, 2018. "Optimization of Passive Envelop Energy Efficient Measures for Office Buildings in Different Climate Regions of China Based on Modified Sensitivity Analysis," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    4. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    5. Yanqiu Cui & Ninghan Sun & Hongbin Cai & Simeng Li, 2020. "Indoor Temperature Improvement and Energy-Saving Renovations in Rural Houses of China’s Cold Region—A Case Study of Shandong Province," Energies, MDPI, vol. 13(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    2. Chen, Xi & Yang, Hongxing, 2018. "Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China," Applied Energy, Elsevier, vol. 215(C), pages 145-158.
    3. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2015. "A comprehensive sensitivity study of major passive design parameters for the public rental housing development in Hong Kong," Energy, Elsevier, vol. 93(P2), pages 1804-1818.
    4. Chen, Xi & Yang, Hongxing & Sun, Ke, 2016. "A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong," Energy, Elsevier, vol. 113(C), pages 267-281.
    5. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.
    6. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. Chen, Xi & Yang, Hongxing, 2017. "A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios," Applied Energy, Elsevier, vol. 206(C), pages 541-557.
    8. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    9. Ancuta C. Abrudan & Octavian G. Pop & Alexandru Serban & Mugur C. Balan, 2019. "New Perspective on Performances and Limits of Solar Fresh Air Cooling in Different Climatic Conditions," Energies, MDPI, vol. 12(11), pages 1-22, June.
    10. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    11. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    12. Xing Li & Qinli Deng & Zhigang Ren & Xiaofang Shan & Guang Yang, 2021. "Parametric Study on Residential Passive House Building in Different Chinese Climate Zones," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    13. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    14. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    15. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2016. "Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate," Applied Energy, Elsevier, vol. 184(C), pages 155-170.
    16. Muresan, Adina Ana & Attia, Shady, 2017. "Energy efficiency in the Romanian residential building stock: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 349-363.
    17. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    18. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
    19. Shilei Lu & Xiaolei Tang & Liran Ji & Daixin Tu, 2017. "Research on Energy-Saving Optimization for the Performance Parameters of Rural-Building Shape and Envelope by TRNSYS-GenOpt in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 9(2), pages 1-18, February.
    20. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2288-:d:122733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.