IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2113-d236645.html
   My bibliography  Save this article

New Perspective on Performances and Limits of Solar Fresh Air Cooling in Different Climatic Conditions

Author

Listed:
  • Ancuta C. Abrudan

    (Department of Building Services, Technical University of Cluj-Napoca, Bd. 21 Decembrie 1989 128-130, 400604 Cluj-Napoca, Romania)

  • Octavian G. Pop

    (Department of Mechanical Engineering, Technical University of Cluj-Napoca, Bd. Muncii 103-105, 400461 Cluj-Napoca, Romania)

  • Alexandru Serban

    (Department of Thermal Engineering, University Politehnica of Bucharest, Splaiul Independentei, 313, 060042 Bucharest, Romania)

  • Mugur C. Balan

    (Department of Mechanical Engineering, Technical University of Cluj-Napoca, Bd. Muncii 103-105, 400461 Cluj-Napoca, Romania)

Abstract

The study carried out by simulation, concerns the thermal behavior of an office building’s solar fresh air cooling system, based on a LiBr-H 2 O absorption chiller in different climatic conditions. The coefficient of performance (COP) and the solar fraction were considered performance parameters and were analyzed with respect to the operating limits—the risk of crystallization and maintaining at least a minimum degassing zone. A new correlation between the required solar hot temperature and the cooling water temperature was established and then embedded in another new correlation between the COP and the cooling water temperature that was used in simulations during the whole cooling season corresponding to each location. It was found that—the solar hot water should be maintained in the range of (80–100) °C depending on the cooling water temperature, the COP of the solar LiBr-H 2 O absorption chiller with or without cold storage tank could reach (76.5–82.4)% depending on the location, and the solar fraction could reach (29.5–62.0)% without cold storage tank and could exceed 100% with cold storage tank, and the excess cooling power being available to cover other types of cooling loads—through the building envelope, from lighting, and from occupants, etc.

Suggested Citation

  • Ancuta C. Abrudan & Octavian G. Pop & Alexandru Serban & Mugur C. Balan, 2019. "New Perspective on Performances and Limits of Solar Fresh Air Cooling in Different Climatic Conditions," Energies, MDPI, vol. 12(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2113-:d:236645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra & Crutescu, Marin & Dobrovicescu, Alexandru & Tsatsaronis, George, 2011. "Modeling, validation and time-dependent simulation of the first large passive building in Romania," Renewable Energy, Elsevier, vol. 36(1), pages 142-157.
    2. Jesús Cerezo & Rosenberg J. Romero & Jonathan Ibarra & Antonio Rodríguez & Gisela Montero & Alexis Acuña, 2018. "Dynamic Simulation of an Absorption Cooling System with Different Working Mixtures," Energies, MDPI, vol. 11(2), pages 1-19, January.
    3. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
    4. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings," Energies, MDPI, vol. 10(10), pages 1-27, September.
    5. Jorge J. Chan & Roberto Best & Jesús Cerezo & Mario A. Barrera & Francisco R. Lezama, 2018. "Experimental Study of a Bubble Mode Absorption with an Inner Vapor Distributor in a Plate Heat Exchanger-Type Absorber with NH 3 -LiNO 3," Energies, MDPI, vol. 11(8), pages 1-16, August.
    6. Alejandro Prieto & Ulrich Knaack & Thomas Auer & Tillmann Klein, 2018. "Feasibility Study of Self-Sufficient Solar Cooling Façade Applications in Different Warm Regions," Energies, MDPI, vol. 11(6), pages 1-18, June.
    7. Jiangjiang Wang & Rujing Yan & Zhuang Wang & Xutao Zhang & Guohua Shi, 2018. "Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors," Energies, MDPI, vol. 11(10), pages 1-17, October.
    8. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    2. Shilei Lu & Ran Wang & Shaoqun Zheng, 2017. "Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China," Sustainability, MDPI, vol. 9(12), pages 1-30, December.
    3. Alvaro A. S. Lima & Gustavo de N. P. Leite & Alvaro A. V. Ochoa & Carlos A. C. dos Santos & José A. P. da Costa & Paula S. A. Michima & Allysson M. A. Caldas, 2020. "Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications," Energies, MDPI, vol. 14(1), pages 1-41, December.
    4. Muresan, Adina Ana & Attia, Shady, 2017. "Energy efficiency in the Romanian residential building stock: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 349-363.
    5. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    6. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
    7. Ali, Dilawer & Ratismith, Wattana, 2021. "A semicircular trough solar collector for air-conditioning system using a single effect NH3–H2O absorption chiller," Energy, Elsevier, vol. 215(PA).
    8. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.
    9. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
    10. Ramadas Narayanan & Subbu Sethuvenkatraman & Roberto Pippia, 2022. "Energy and Comfort Evaluation of Fresh Air-Based Hybrid Cooling System in Hot and Humid Climates," Energies, MDPI, vol. 15(20), pages 1-13, October.
    11. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    12. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    13. Nikkerdar, F. & Rahimi, M. & Ranjbar, A.A. & Pakrouh, R. & Bahrampoury, R., 2021. "Solar assisted thermal storage system for free heating applications in moderate climates: A case study," Energy, Elsevier, vol. 220(C).
    14. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Pau Fonseca i Casas & Antoni Fonseca i Casas & Nuria Garrido-Soriano & Alfonso Godoy & Wendys-Carolina Pujols & Jesus Garcia, 2017. "Solution Validation for a Double Façade Prototype," Energies, MDPI, vol. 10(12), pages 1-19, December.
    16. Ramadas Narayanan & Edward Halawa & Sanjeev Jain, 2019. "Dehumidification Potential of a Solid Desiccant Based Evaporative Cooling System with an Enthalpy Exchanger Operating in Subtropical and Tropical Climates," Energies, MDPI, vol. 12(14), pages 1-18, July.
    17. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
    18. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.
    20. Edward Halawa & Frank Bruno, 2023. "Energy Performance and Thermal Comfort Delivery Capabilities of Solid-Desiccant Rotor-Based Air-Conditioning for Warm to Hot and Humid Climates—A Critical Review," Energies, MDPI, vol. 16(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2113-:d:236645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.