IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp145-158.html
   My bibliography  Save this article

Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China

Author

Listed:
  • Chen, Xi
  • Yang, Hongxing

Abstract

This paper mainly focuses on investigating the influence of weather conditions on the sensitivity analysis and optimization of a typical passively designed high-rise residential building. A holistic passive design approach combining a variance-based factor prioritizing and surrogate model based multi-objective optimization was previously proposed to explore the green building solution in the hot and humid climate of Hong Kong. The design approach is further extended for application into a broader spectrum of climates across the mainland of China, including the severe cold zone, cold zone, hot summer cold winter zone, temperate zone as well as hot summer warm winter zone. The relative weight analysis is first compared with the Fourier Amplitude Transformation Analysis (FAST) in prioritizing the weighting of design inputs for different climatic zones. The relative weight analysis is then proved a feasible alternative sensitivity analysis method when its corresponding multiple linear regression (MLR) model can achieve good prediction performance. Furthermore, a tuning program in R is developed to improve the prediction performance of surrogate models with the Support Vector Machine (SVM) algorithm under above climatic zones. The model fitting performance with SVM is proved to be greatly improved by modifying the Sigma and C parameters. Finally, optimum design options under the five climatic zones are discussed in relation to the outdoor thermal, ventilation and solar radiation conditions. This research explored the applicability of the proposed passive design optimization approach in diverse climates, and can therefore prompt decision-makers’ endorsement as a national green building design tool in the early planning stage.

Suggested Citation

  • Chen, Xi & Yang, Hongxing, 2018. "Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China," Applied Energy, Elsevier, vol. 215(C), pages 145-158.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:145-158
    DOI: 10.1016/j.apenergy.2018.01.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Groemping, Ulrike, 2006. "Relative Importance for Linear Regression in R: The Package relaimpo," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 17(i01).
    2. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    3. Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.
    4. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2015. "A comprehensive sensitivity study of major passive design parameters for the public rental housing development in Hong Kong," Energy, Elsevier, vol. 93(P2), pages 1804-1818.
    5. Chen, Xi & Yang, Hongxing, 2017. "A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios," Applied Energy, Elsevier, vol. 206(C), pages 541-557.
    6. Kneifel, Joshua & Webb, David, 2016. "Predicting energy performance of a net-zero energy building: A statistical approach," Applied Energy, Elsevier, vol. 178(C), pages 468-483.
    7. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    8. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    9. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    10. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.
    11. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    12. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Simulation-based approach to optimize passively designed buildings: A case study on a typical architectural form in hot and humid climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1712-1725.
    13. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    14. Chen, Xi & Yang, Hongxing & Sun, Ke, 2016. "A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong," Energy, Elsevier, vol. 113(C), pages 267-281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    2. Sorrentino, Marco & Bruno, Marco & Trifirò, Alena & Rizzo, Gianfranco, 2019. "An innovative energy efficiency metric for data analytics and diagnostics in telecommunication applications," Applied Energy, Elsevier, vol. 242(C), pages 1539-1548.
    3. D'Agostino, Delia & Congedo, Paolo Maria & Albanese, Paola Maria & Rubino, Alessandro & Baglivo, Cristina, 2024. "Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe," Energy, Elsevier, vol. 288(C).
    4. Fang Wang & Wen-Jia Yang & Wei-Feng Sun, 2020. "Heat Transfer and Energy Consumption of Passive House in a Severely Cold Area: Simulation Analyses," Energies, MDPI, vol. 13(3), pages 1-19, February.
    5. Andrea Vieri & Agostino Gambarotta & Mirko Morini & Costanza Saletti, 2024. "An Integrated Artificial Intelligence Approach for Building Energy Demand Forecasting," Energies, MDPI, vol. 17(19), pages 1-28, October.
    6. Naji, Sareh & Aye, Lu & Noguchi, Masa, 2021. "Sensitivity analysis on energy performance, thermal and visual discomfort of a prefabricated house in six climate zones in Australia," Applied Energy, Elsevier, vol. 298(C).
    7. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    8. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    9. Yuan Fang & Soolyeon Cho & Yanyu Wang & Luya He, 2023. "Sensitivity Analysis and Multi-Objective Optimization of Skylight Design in the Early Design Stage," Energies, MDPI, vol. 17(1), pages 1-18, December.
    10. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    11. Gan, Wei & Yan, Mingyu & Yao, Wei & Guo, Jianbo & Ai, Xiaomeng & Fang, Jiakun & Wen, Jinyu, 2021. "Decentralized computation method for robust operation of multi-area joint regional-district integrated energy systems with uncertain wind power," Applied Energy, Elsevier, vol. 298(C).
    12. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
    13. Mao, Ning & Hao, Jingyu & Cui, Borui & Li, Yuxing & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2018. "Energy performance of a bedroom task/ambient air conditioning (TAC) system applied in different climate zones of China," Energy, Elsevier, vol. 159(C), pages 724-736.
    14. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    15. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    16. Seung Yeoun Choi & Sean Hay Kim, 2022. "Selection of a Transparent Meta-Model Algorithm for Feasibility Analysis Stage of Energy Efficient Building Design: Clustering vs. Tree," Energies, MDPI, vol. 15(18), pages 1-25, September.
    17. Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
    18. Habiba Aly & Omar Abdelaziz, 2024. "Sustainable Design Trends in the Built-Environment Globally and in Egypt: A Literature Review," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    19. Nastro, Francesco & Sorrentino, Marco & Trifirò, Alena, 2022. "A machine learning approach based on neural networks for energy diagnosis of telecommunication sites," Energy, Elsevier, vol. 245(C).
    20. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    21. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.
    22. Chegari, Badr & Tabaa, Mohamed & Simeu, Emmanuel & Moutaouakkil, Fouad & Medromi, Hicham, 2022. "An optimal surrogate-model-based approach to support comfortable and nearly zero energy buildings design," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xi & Yang, Hongxing, 2017. "A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios," Applied Energy, Elsevier, vol. 206(C), pages 541-557.
    2. Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
    3. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    5. Shilei Lu & Ran Wang & Shaoqun Zheng, 2017. "Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China," Sustainability, MDPI, vol. 9(12), pages 1-30, December.
    6. Chen, Xi & Yang, Hongxing & Sun, Ke, 2016. "A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong," Energy, Elsevier, vol. 113(C), pages 267-281.
    7. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.
    8. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    9. Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2019. "Energy optimization of high-rise commercial buildings integrated with photovoltaic facades in urban context," Energy, Elsevier, vol. 172(C), pages 1-17.
    10. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    11. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    12. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    13. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    14. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    16. Ning Li & Zhechen Peng & Jian Dai & Ziwei Li, 2022. "Performance-Oriented Passive Design Strategies for Shape and Envelope Structure of Independent Residential Buildings in Yangtze River Delta Suburbs," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    17. Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
    18. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    19. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    20. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:145-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.