IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2076-d118458.html
   My bibliography  Save this article

Impact Assessment of Pollutant Emissions in the Atmosphere from a Power Plant over a Complex Terrain and under Unsteady Winds

Author

Listed:
  • Grazia Ghermandi

    (Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy)

  • Sara Fabbi

    (Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy)

  • Barbara Arvani

    (Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy)

  • Giorgio Veratti

    (Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy)

  • Alessandro Bigi

    (Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy)

  • Sergio Teggi

    (Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy)

Abstract

The development of a natural gas-fired tri-generation power plant (520 MW Combined Cycle Gas Turbines + 58 MW Tri-generation) in the Republic of San Marino, a small independent country in Northern Italy, is under assessment. This work investigates the impact of atmospheric emissions of NO x by the plant, under the Italian and European regulatory framework. The impact assessment was performed by the means of the Aria Industry package, including the 3D Lagrangian stochastic particle dispersion model SPRAY, the diagnostic meteorological model SWIFT, and the turbulence model SURFPRO (Aria Technologies, France, and Arianet, Italy). The Republic of San Marino is almost completely mountainous, 10 km west of the Adriatic Sea and affected by land-sea breeze circulation. SPRAY is suitable for simulations under non-homogenous and non-stationary conditions, over a complex topography. The emission scenario included both a worst-case meteorological condition and three 10-day periods representative of typical atmospheric conditions for 2014. The simulated NO x concentrations were compared with the regulatory air quality limits. Notwithstanding the high emission rate, the simulation showed a spatially confined environmental impact, with only a single NO x peak at ground where the plume hits the hillside of the Mount Titano (749 m a.s.l.), 5 km west of the future power plant.

Suggested Citation

  • Grazia Ghermandi & Sara Fabbi & Barbara Arvani & Giorgio Veratti & Alessandro Bigi & Sergio Teggi, 2017. "Impact Assessment of Pollutant Emissions in the Atmosphere from a Power Plant over a Complex Terrain and under Unsteady Winds," Sustainability, MDPI, vol. 9(11), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2076-:d:118458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuanglin Fang & Haimeng Liu & Guangdong Li & Dongqi Sun & Zhuang Miao, 2015. "Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models," Sustainability, MDPI, vol. 7(11), pages 1-23, November.
    2. Alessandrini, Stefano & Ferrero, Enrico, 2009. "A hybrid Lagrangian–Eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1375-1387.
    3. Daniel A. Vallero, 2016. "Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus," Sustainability, MDPI, vol. 8(12), pages 1-9, November.
    4. Mehdi Aliehyaei & Farideh Atabi & Mohammad Khorshidvand & Marc A. Rosen, 2015. "Exergy, Economic and Environmental Analysis for Simple and Combined Heat and Power IC Engines," Sustainability, MDPI, vol. 7(4), pages 1-14, April.
    5. Minako Hara & Tomomi Nagao & Shinsuke Hannoe & Jiro Nakamura, 2016. "New Key Performance Indicators for a Smart Sustainable City," Sustainability, MDPI, vol. 8(3), pages 1-19, March.
    6. Behnam Tashayo & Abbas Alimohammadi & Mohammad Sharif, 2017. "A Hybrid Fuzzy Inference System Based on Dispersion Model for Quantitative Environmental Health Impact Assessment of Urban Transportation Planning," Sustainability, MDPI, vol. 9(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Cichowicz & Maciej Dobrzański, 2021. "Modeling Pollutant Emissions: Influence of Two Heat and Power Plants on Urban Air Quality," Energies, MDPI, vol. 14(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meelan Thondoo & David Rojas-Rueda & Joyeeta Gupta & Daniel H. de Vries & Mark J. Nieuwenhuijsen, 2019. "Systematic Literature Review of Health Impact Assessments in Low and Middle-Income Countries," IJERPH, MDPI, vol. 16(11), pages 1-21, June.
    2. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    3. Tuo Shi & Yuanman Hu & Miao Liu & Chunlin Li & Chuyi Zhang & Chong Liu, 2020. "How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    4. Zhuang Miao & Tomas Baležentis & Zhihua Tian & Shuai Shao & Yong Geng & Rui Wu, 2019. "Environmental Performance and Regulation Effect of China’s Atmospheric Pollutant Emissions: Evidence from “Three Regions and Ten Urban Agglomerations”," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 211-242, September.
    5. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    6. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    7. Mubarak Saad Almutairi, 2024. "Evolutionary Multi-Objective Feature Selection Algorithms on Multiple Smart Sustainable Community Indicator Datasets," Sustainability, MDPI, vol. 16(4), pages 1-25, February.
    8. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    9. Arezoo Mokhtari & Behnam Tashayo & Kaveh Deilami, 2021. "Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM 2.5 Estimation," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    10. Larissa Diana Michelam & Tatiana Tucunduva Philippi Cortese & Tan Yigitcanlar & Ana Cristina Fachinelli & Leonardo Vils & Wilson Levy, 2021. "Leveraging Smart and Sustainable Development via International Events: Insights from Bento Gonçalves Knowledge Cities World Summit," Sustainability, MDPI, vol. 13(17), pages 1-27, September.
    11. Sebastiano Carbonara & Marco Faustoferri & Davide Stefano, 2021. "Real Estate Values and Urban Quality: A Multiple Linear Regression Model for Defining an Urban Quality Index," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    12. Huanhuan Xiong & Lingyu Lan & Longwu Liang & Yaobin Liu & Xiaoyu Xu, 2020. "Spatiotemporal Differences and Dynamic Evolution of PM 2.5 Pollution in China," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    13. Hansol Mun & Mengying Li & Juchul Jung, 2022. "Spatial-Temporal Characteristics and Influencing Factors of Particulate Matter: Geodetector Approach," Land, MDPI, vol. 11(12), pages 1-26, December.
    14. Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).
    15. Feng Wang & Jing Ren & Juan Liu & Mingru Dong & Bin Yan & Hui Zhao, 2021. "Spatial correlation network and population mobility effect of regional haze pollution: empirical evidence from Pearl River Delta urban agglomeration in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15881-15896, November.
    16. Jingyi Zhang & Bin Li & Yumin Chen & Meijie Chen & Tao Fang & Yongfeng Liu, 2018. "Eigenvector Spatial Filtering Regression Modeling of Ground PM 2.5 Concentrations Using Remotely Sensed Data," IJERPH, MDPI, vol. 15(6), pages 1-24, June.
    17. José-Luis Alfaro-Navarro & Víctor-Raúl López-Ruiz & Domingo Nevado Peña, 2017. "A New Sustainability City Index Based on Intellectual Capital Approach," Sustainability, MDPI, vol. 9(5), pages 1-13, May.
    18. Tong Ye & Yi Zhuang & Gongzhe Qiao, 2023. "SCKPISec: A KPI-Guided Model-Based Approach to Realize Security by Design for Smart City Systems," Sustainability, MDPI, vol. 15(3), pages 1-41, January.
    19. Yun Luo & Pengcheng Xiang & Yiming Wang, 2020. "Investigate the Relationship between Urbanization and Industrialization using a Coordination Model: A Case Study of China," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    20. Bisignano, Andrea & Mortarini, Luca & Ferrero, Enrico, 2017. "Evaluation of high-order concentration statistics in a dispersing plume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 115-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2076-:d:118458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.