IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2022-d117845.html
   My bibliography  Save this article

Modelling Interactions between Land Use, Climate, and Hydrology along with Stakeholders’ Negotiation for Water Resources Management

Author

Listed:
  • Babak Farjad

    (Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
    Alberta Environment and Parks, Calgary, AB T2E 7L7, Canada)

  • Majeed Pooyandeh

    (Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada)

  • Anil Gupta

    (Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
    Alberta Environment and Parks, Calgary, AB T2E 7L7, Canada)

  • Mohammad Motamedi

    (Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada)

  • Danielle Marceau

    (Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada)

Abstract

This paper describes the main functionalities of an integrated framework to model the interactions between land use, climate, and hydrology along with stakeholders’ negotiation. Its novelty lies in the combination of individual-based and spatially distributed models within the Socio-Hydrology paradigm to capture the complexity and uncertainty inherent to these systems. It encompasses a land-use/land-cover cellular automata model, an agent-based model used for automated stakeholders’ negotiation, and the hydrological MIKE SHE/MIKE 11 model, which are linked and can be accessed through a web-based interface. It enables users to run simulations to explore a wide range of scenarios related to land development and water resource management while considering the reciprocal influence of human and natural systems. This framework was developed with the involvement of key stakeholders from the initial design stage to the final demonstration and validation.

Suggested Citation

  • Babak Farjad & Majeed Pooyandeh & Anil Gupta & Mohammad Motamedi & Danielle Marceau, 2017. "Modelling Interactions between Land Use, Climate, and Hydrology along with Stakeholders’ Negotiation for Water Resources Management," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2022-:d:117845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    2. Vladimir Nikolic & Slobodan Simonovic & Dragan Milicevic, 2013. "Analytical Support for Integrated Water Resources Management: A New Method for Addressing Spatial and Temporal Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 401-417, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nassiri-Mofakham, Faria & Huhns, Michael N., 2023. "Role of culture in water resources management via sustainable social automated negotiation," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Naser Shiri & Jalal Shiri & Zaher Mundher Yaseen & Sungwon Kim & Il-Moon Chung & Vahid Nourani & Mohammad Zounemat-Kermani, 2021. "Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-24, May.
    3. Maisa’a W. Shammout & Muhammad Shatanawi & Jim Nelson, 2018. "Curve Number Applications for Restoration the Zarqa River Basin," Sustainability, MDPI, vol. 10(3), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    2. Ficko, Andrej & Boncina, Andrej, 2013. "Probabilistic typology of management decision making in private forest properties," Forest Policy and Economics, Elsevier, vol. 27(C), pages 34-43.
    3. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Qingxu Huang & Dawn C Parker & Tatiana Filatova & Shipeng Sun, 2014. "A Review of Urban Residential Choice Models Using Agent-Based Modeling," Environment and Planning B, , vol. 41(4), pages 661-689, August.
    5. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    6. Kamel Louhichi & Aymeric Ricome & Sergio Gomez y Paloma, 2022. "Impacts of agricultural taxation in Sub‐Saharan Africa: Insights from agricultural produce cess in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 671-686, September.
    7. Bindewald, Eckart, 2017. "A survey suggests individual priorities are virtually unique: Implications for group dynamics, goal achievement and ecology," Ecological Modelling, Elsevier, vol. 362(C), pages 69-79.
    8. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    9. Laura McKinney & Devin C. Wright, 2021. "Climate Change and Water Dynamics in Rural Uganda," Sustainability, MDPI, vol. 13(15), pages 1-12, July.
    10. Hancong Ma & Mei Li & Xin Tong & Ping Dong, 2023. "Community-Level Household Waste Disposal Behavior Simulation and Visualization under Multiple Incentive Policies—An Agent-Based Modelling Approach," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    11. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    12. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    13. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).
    14. Pacilly, Francine C.A. & Hofstede, Gert Jan & Lammerts van Bueren, Edith T. & Kessel, Geert J.T. & Groot, Jeroen C.J., 2018. "Simulating crop-disease interactions in agricultural landscapes to analyse the effectiveness of host resistance in disease control: The case of potato late blight," Ecological Modelling, Elsevier, vol. 378(C), pages 1-12.
    15. Yuke Wang & Christine L. Moe & Peter F. M. Teunis, 2018. "Children Are Exposed to Fecal Contamination via Multiple Interconnected Pathways: A Network Model for Exposure Assessment," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2478-2496, November.
    16. Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
    17. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    18. Eigner, Amanda E. & Nuppenau, Ernst-August, 2019. "Applied spatial approach of modelling field size changes based on a consideration of farm and landscape interrelations," Agricultural Systems, Elsevier, vol. 176(C).
    19. Müller-Hansen, Finn & Heitzig, Jobst & Donges, Jonathan & Cardoso, Manoel F. & Dalla-Nora, Eloi L. & Andrade, Pedro R. & Kurths, Jürgen & Thonicke, Kirsten, 2019. "Can intensification of cattle ranching reduce deforestation in the Amazon? Insights from an agent-based social-ecological model," SocArXiv x5q9j, Center for Open Science.
    20. Leigh Tesfatsion, 2017. "Elements of Dynamic Economic Modeling: Presentation and Analysis," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 192-216, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2022-:d:117845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.