IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v229y2012icp25-36.html
   My bibliography  Save this article

Modeling human decisions in coupled human and natural systems: Review of agent-based models

Author

Listed:
  • An, Li

Abstract

Coupled human and natural systems (CHANS) manifest various complexities such as heterogeneity, nonlinearity, feedback, and emergence. Humans play a critical role in affecting such systems and in giving rise to various environmental consequences, which may in turn affect future human decisions and behavior. In light of complexity theory and its application in CHANS, this paper reviews various decision models used in agent based simulations of CHANS dynamics, discussing their strengths and weaknesses. This paper concludes by advocating development of more process-based decision models as well as protocols or architectures that facilitate better modeling of human decisions in various CHANS.

Suggested Citation

  • An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
  • Handle: RePEc:eee:ecomod:v:229:y:2012:i:c:p:25-36
    DOI: 10.1016/j.ecolmodel.2011.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011003802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hare, M & Deadman, P, 2004. "Further towards a taxonomy of agent-based simulation models in environmental management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 25-40.
    2. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    3. Ian Lustick, 2000. "Agent-Based Modelling of Collective Identity: Testing Constructivist Theory," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 3(1), pages 1-1.
    4. Albino, Vito & Carbonara, Nunzia & Giannoccaro, Ilaria, 2006. "Innovation in industrial districts: An agent-based simulation model," International Journal of Production Economics, Elsevier, vol. 104(1), pages 30-45, November.
    5. Janssen, Marco A. & Ostrom, Elinor, 2006. "Governing Social-Ecological Systems," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 30, pages 1465-1509, Elsevier.
    6. Li Yin & Brian Muller, 2007. "Residential Location and the Biophysical Environment: Exurban Development Agents in a Heterogeneous Landscape," Environment and Planning B, , vol. 34(2), pages 279-295, April.
    7. Thomas W Crawford & Joseph P Messina & Steven M Manson & David O'Sullivan, 2005. "Complexity Science, Complex Systems, and Land-Use Research," Environment and Planning B, , vol. 32(6), pages 792-798, December.
    8. Raja Sengupta & Christopher Lant & Steven Kraft & Jeffrey Beaulieu & William Peterson & Timothy Loftus, 2005. "Modeling Enrollment in the Conservation Reserve Program by Using Agents within Spatial Decision Support Systems: An Example from Southern Illinois," Environment and Planning B, , vol. 32(6), pages 821-834, December.
    9. Chen, Xiaodong & Lupi, Frank & An, Li & Sheely, Ryan & Viña, Andrés & Liu, Jianguo, 2012. "Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services," Ecological Modelling, Elsevier, vol. 229(C), pages 16-24.
    10. Olivier Barreteau & François Bousquet, 2000. "SHADOC: a multi‐agent model to tackle viability of irrigated systems," Annals of Operations Research, Springer, vol. 94(1), pages 139-162, January.
    11. Phillip Stroud & Sara Del Valle & Stephen Sydoriak & Jane Riese & Susan Mniszewski, 2007. "Spatial Dynamics of Pandemic Influenza in a Massive Artificial Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-9.
    12. Michel Etienne & Christophe Le Page & Mathilde Cohen, 2003. "A Step-By-Step Approach to Building Land Management Scenarios Based on Multiple Viewpoints on Multi-Agent System Simulations," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(2), pages 1-2.
    13. Brian W. Kulik & Timothy Baker, 2008. "Putting the organization back into computational organization theory: a complex Perrowian model of organizational action," Computational and Mathematical Organization Theory, Springer, vol. 14(2), pages 84-119, June.
    14. Michael Batty, 2005. "Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics," Environment and Planning A, , vol. 37(8), pages 1373-1394, August.
    15. Feola, Giuseppe & Binder, Claudia R., 2010. "Towards an improved understanding of farmers' behaviour: The integrative agent-centred (IAC) framework," Ecological Economics, Elsevier, vol. 69(12), pages 2323-2333, October.
    16. Joseph P Messina & Stephen J Walsh, 2005. "Dynamic Spatial Simulation Modeling of the Population — Environment Matrix in the Ecuadorian Amazon," Environment and Planning B, , vol. 32(6), pages 835-856, December.
    17. M Batty & H Couclelis & M Eichen, 1997. "Urban Systems as Cellular Automata," Environment and Planning B, , vol. 24(2), pages 159-164, April.
    18. Barbara Entwisle, 2007. "Putting people into place," Demography, Springer;Population Association of America (PAA), vol. 44(4), pages 687-703, November.
    19. John H. Miller & Scott E. Page, 2007. "Social Science in Between, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    20. Saqalli, M. & Gérard, B. & Bielders, C.L. & Defourny, P., 2011. "Targeting rural development interventions: Empirical agent-based modeling in Nigerien villages," Agricultural Systems, Elsevier, vol. 104(4), pages 354-364, April.
    21. Castella, Jean-Christophe & Boissau, Stanislas & Trung, Tran Ngoc & Quang, Dang Dinh, 2005. "Agrarian transition and lowland-upland interactions in mountain areas in northern Vietnam: application of a multi-agent simulation model," Agricultural Systems, Elsevier, vol. 86(3), pages 312-332, December.
    22. Juval Portugali, 2006. "Complexity Theory as a Link between Space and Place," Environment and Planning A, , vol. 38(4), pages 647-664, April.
    23. Schreinemachers, Pepijn & Berger, Thomas & Aune, Jens B., 2007. "Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach," Ecological Economics, Elsevier, vol. 64(2), pages 387-401, December.
    24. Emma Uprichard & David Byrne, 2006. "Representing Complex Places: A Narrative Approach," Environment and Planning A, , vol. 38(4), pages 665-676, April.
    25. Yong Yang & Peter M Atkinson, 2008. "Individual Space – Time Activity-Based Model: A Model for the Simulation of Airborne Infectious-Disease Transmission by Activity-Bundle Simulation," Environment and Planning B, , vol. 35(1), pages 80-99, February.
    26. John H. Miller & Scott E. Page, 2007. "Complexity in Social Worlds, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    27. James Millington & Raúl Romero-Calcerrada & John Wainwright & George Perry, 2008. "An Agent-Based Model of Mediterranean Agricultural Land-Use/Cover Change for Examining Wildfire Risk," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-4.
    28. Luis E Fernandez & Daniel G Brown & Robert W Marans & Joan I Nassauer, 2005. "Characterizing Location Preferences in an Exurban Population: Implications for Agent-Based Modeling," Environment and Planning B, , vol. 32(6), pages 799-820, December.
    29. Hanna Maoh & Pavlos Kanaroglou, 2007. "Business establishment mobility behavior in urban areas: a microanalytical model for the City of Hamilton in Ontario, Canada," Journal of Geographical Systems, Springer, vol. 9(3), pages 229-252, September.
    30. Arika Ligmann-Zielinska & Piotr Jankowski, 2007. "Agent-Based Models as Laboratories for Spatially Explicit Planning Policies," Environment and Planning B, , vol. 34(2), pages 316-335, April.
    31. Linard, Catherine & Ponçon, Nicolas & Fontenille, Didier & Lambin, Eric F., 2009. "A multi-agent simulation to assess the risk of malaria re-emergence in southern France," Ecological Modelling, Elsevier, vol. 220(2), pages 160-174.
    32. Alan G Wilson, 2006. "Ecological and Urban Systems Models: Some Explorations of Similarities in the Context of Complexity Theory," Environment and Planning A, , vol. 38(4), pages 633-646, April.
    33. Purnomo, Herry & Mendoza, Guillermo A. & Prabhu, Ravi & Yasmi, Yurdi, 2005. "Developing multi-stakeholder forest management scenarios: a multi-agent system simulation approach applied in Indonesia," Forest Policy and Economics, Elsevier, vol. 7(4), pages 475-491, May.
    34. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    35. Steven Manson & David O'Sullivan, 2006. "Complexity Theory in the Study of Space and Place," Environment and Planning A, , vol. 38(4), pages 677-692, April.
    36. Patrick D'aquino & Christophe Le Page & François Bousquet & Alassane Bah, 2003. "Using Self-Designed Role-Playing Games and a Multi-Agent System to Empower a Local Decision-Making Process for Land Use Management: the SelfCormas Experiment in Senegal," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(3), pages 1-5.
    37. Seppelt, Ralf & Müller, Felix & Schröder, Boris & Volk, Martin, 2009. "Challenges of simulating complex environmental systems at the landscape scale: A controversial dialogue between two cups of espresso," Ecological Modelling, Elsevier, vol. 220(24), pages 3481-3489.
    38. Jager, W. & Janssen, M. A. & De Vries, H. J. M. & De Greef, J. & Vlek, C. A. J., 2000. "Behaviour in commons dilemmas: Homo economicus and Homo psychologicus in an ecological-economic model," Ecological Economics, Elsevier, vol. 35(3), pages 357-379, December.
    39. Joshua M. Epstein, 2009. "Modelling to contain pandemics," Nature, Nature, vol. 460(7256), pages 687-687, August.
    40. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    41. Christopher S. Fowler, 2007. "Taking geographical economics out of equilibrium: implications for theory and policy," Journal of Economic Geography, Oxford University Press, vol. 7(3), pages 265-284, May.
    42. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    43. Mehdi Saqalli & Charles L. Bielders & Bruno Gerard & Pierre Defourny, 2010. "Simulating Rural Environmentally and Socio-Economically Constrained Multi-Activity and Multi-Decision Societies in a Low-Data Context: A Challenge Through Empirical Agent-Based Modeling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(2), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apetrei, Cristina I. & Strelkovskii, Nikita & Khabarov, Nikolay & Javalera Rincón, Valeria, 2024. "Improving the representation of smallholder farmers’ adaptive behaviour in agent-based models: Learning-by-doing and social learning," Ecological Modelling, Elsevier, vol. 489(C).
    2. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    3. Chion, Clément & Lamontagne, P. & Turgeon, S. & Parrott, L. & Landry, J.-A. & Marceau, D.J. & Martins, C.C.A. & Michaud, R. & Ménard, N. & Cantin, G. & Dionne, S., 2011. "Eliciting cognitive processes underlying patterns of human–wildlife interactions for agent-based modelling," Ecological Modelling, Elsevier, vol. 222(14), pages 2213-2226.
    4. Malawska, Anna & Topping, Christopher John, 2016. "Evaluating the role of behavioral factors and practical constraints in the performance of an agent-based model of farmer decision making," Agricultural Systems, Elsevier, vol. 143(C), pages 136-146.
    5. Held, Fabian P. & Wilkinson, Ian F. & Marks, Robert E. & Young, Louise, 2014. "Agent-based Modelling, a new kind of research," Australasian marketing journal, Elsevier, vol. 22(1), pages 4-14.
    6. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    7. Florian Chávez-Juárez, 2017. "On the Role of Agent-based Modeling in the Theory of Development Economics," Review of Development Economics, Wiley Blackwell, vol. 21(3), pages 713-730, August.
    8. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    9. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    10. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    11. Dominique Ami & Juliette Rouchier, 2014. "Mesures techniques, Choix Institutionnels et Equité dans l’usage d’une ressource commune : Le cas du littoral marseillais," AMSE Working Papers 1427, Aix-Marseille School of Economics, France, revised Jun 2014.
    12. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    13. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    14. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    15. Situngkir, Hokky & Lumbantobing, Andika Bernad, 2020. "The Pandemics in Artificial Society: Agent-Based Model to Reflect Strategies on COVID-19," MPRA Paper 102075, University Library of Munich, Germany.
    16. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    17. Wolfram Elsner, 2019. "Policy and state in complexity economics," Chapters, in: Nikolaos Karagiannis & John E. King (ed.), A Modern Guide to State Intervention, chapter 1, pages 13-48, Edward Elgar Publishing.
    18. James Caton, 2017. "Entrepreneurship, search costs, and ecological rationality in an agent-based economy," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(1), pages 107-130, March.
    19. Georg Holtz & Christian Schnülle & Malcolm Yadack & Jonas Friege & Thorben Jensen & Pablo Thier & Peter Viebahn & Émile J. L. Chappin, 2020. "Using Agent-Based Models to Generate Transformation Knowledge for the German Energiewende—Potentials and Challenges Derived from Four Case Studies," Energies, MDPI, vol. 13(22), pages 1-26, November.
    20. Fraser J. Morgan & Philip Brown & Adam J. Daigneault, 2015. "Simulation vs. Definition: Differing Approaches to Setting Probabilities for Agent Behaviour," Land, MDPI, vol. 4(4), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:229:y:2012:i:c:p:25-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.