IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v378y2018icp1-12.html
   My bibliography  Save this article

Simulating crop-disease interactions in agricultural landscapes to analyse the effectiveness of host resistance in disease control: The case of potato late blight

Author

Listed:
  • Pacilly, Francine C.A.
  • Hofstede, Gert Jan
  • Lammerts van Bueren, Edith T.
  • Kessel, Geert J.T.
  • Groot, Jeroen C.J.

Abstract

Disease-resistant potato varieties can play a key role in sustainable control of potato late blight. However, when these varieties are more widely used, resistance breakdown can occur as a result of pathogen adaptation. Here we focussed on potato cultivation in the Netherlands, where new (single gene) resistant varieties have been introduced over the last ten years. This new generation of late blight resistant varieties has moderate yield levels and does not meet all market requirements. As a result, adoption rates for resistant varieties have been low so far. We developed a spatially explicit agent-based model to simulate potato production, disease spread and pathogen evolution at the landscape level. We analysed how late blight severity, resistance durability and potato yield are affected by the spatial deployment of a resistant variety, with a lower potential yield than susceptible varieties. The model was applied to an agricultural region in the Netherlands (596 km2) and was run for a period of 36 years using daily weather data as input for crop growth and disease dynamics. The short- and long-term effects of the deployment of a resistant variety were analysed with the model. With respect to short-term dynamics, years were analysed independently to study between year variation. The model demonstrated that in most years, susceptible fields without fungicide application suffered severe yield losses and resistant fields performed better despite their lower potential yield. Resistance breakdown was observed in a small fraction of fields with the resistant variety, but this did not affect mean potato yield or disease incidence in the short term since it occurred at the end of the growing season. Increasing the fraction of potato fields with the resistant variety strongly reduced late blight infection within a landscape. With respect to the long-term effects, the model showed the emergence and spread of a virulent strain over time. The virulent strain gradually took over the pathogen population, decreasing mean potato yields from fields with the resistant variety. This occurred in all landscape compositions where the resistant variety was deployed to different extents. It was found that low as well as high proportions of fields with the resistant variety could increase durability of resistance. With these findings, the model provided more insight into the opportunities and risks related to the use of plant resistance in disease control, an important and sustainable disease management strategy.

Suggested Citation

  • Pacilly, Francine C.A. & Hofstede, Gert Jan & Lammerts van Bueren, Edith T. & Kessel, Geert J.T. & Groot, Jeroen C.J., 2018. "Simulating crop-disease interactions in agricultural landscapes to analyse the effectiveness of host resistance in disease control: The case of potato late blight," Ecological Modelling, Elsevier, vol. 378(C), pages 1-12.
  • Handle: RePEc:eee:ecomod:v:378:y:2018:i:c:p:1-12
    DOI: 10.1016/j.ecolmodel.2018.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001830108X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    2. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    3. Hossard, Laure & Gosme, Marie & Souchère, Véronique & Jeuffroy, Marie-Hélène, 2015. "Linking cropping system mosaics to disease resistance durability," Ecological Modelling, Elsevier, vol. 307(C), pages 1-9.
    4. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cieslik, Katarzyna & Cecchi, Francesco & Assefa Damtew, Elias & Tafesse, Shiferaw & Struik, Paul C. & Lemaga, Berga & Leeuwis, Cees, 2021. "The role of ICT in collective management of public bads: The case of potato late blight in Ethiopia," World Development, Elsevier, vol. 140(C).
    2. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    3. Jaap Sok & Egil A J Fischer, 2020. "Farmers' heterogeneous motives, voluntary vaccination and disease spread: an agent-based model," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1201-1222.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Ravaioli & Tiago Domingos & Ricardo F. M. Teixeira, 2023. "A Framework for Data-Driven Agent-Based Modelling of Agricultural Land Use," Land, MDPI, vol. 12(4), pages 1-17, March.
    2. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    3. Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
    4. Leigh Tesfatsion, 2017. "Elements of Dynamic Economic Modeling: Presentation and Analysis," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 192-216, March.
    5. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    6. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    7. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    8. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    9. Tesfatsion, Leigh, 2017. "Modeling Economic Systems as Locally-Constructive Sequential Games," ISU General Staff Papers 201704300700001022, Iowa State University, Department of Economics.
    10. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    11. Jonas Friege & Georg Holtz & Emile Chappin, 2016. "Exploring Homeowners’ Insulation Activity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-4.
    12. Leigh Tesfatsion, 2017. "Modeling economic systems as locally-constructive sequential games," Journal of Economic Methodology, Taylor & Francis Journals, vol. 24(4), pages 384-409, October.
    13. Egger, Claudine & Plutzar, Christoph & Mayer, Andreas & Dullinger, Iwona & Dullinger, Stefan & Essl, Franz & Gattringer, Andreas & Bohner, Andreas & Haberl, Helmut & Gaube, Veronika, 2022. "Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria)," Ecological Economics, Elsevier, vol. 201(C).
    14. Tesfatsion, Leigh, 2017. "Modeling Economic Systems as Locally-Constructive Sequential Games," ISU General Staff Papers 201703280700001022, Iowa State University, Department of Economics.
    15. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2021. "The effect of group decisions in heat transitions: An agent-based approach," Energy Policy, Elsevier, vol. 156(C).
    16. Enda O’Connell, 2017. "Towards Adaptation of Water Resource Systems to Climatic and Socio-Economic Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2965-2984, August.
    17. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    18. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    19. Li, Feixue & Li, Zhifeng & Chen, Honghua & Chen, Zhenjie & Li, Manchun, 2020. "An agent-based learning-embedded model (ABM-learning) for urban land use planning: A case study of residential land growth simulation in Shenzhen, China," Land Use Policy, Elsevier, vol. 95(C).
    20. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:378:y:2018:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.