IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p1997-d117277.html
   My bibliography  Save this article

Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study

Author

Listed:
  • Athanasios T. Balafoutis

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
    Institute of Bioeconomy & Agrotechnology, Centre of Research & Technology Hellas, Dimitriados 95 & Pavlou Mela, 38333 Volos, Greece)

  • Stefanos Koundouras

    (Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Evangelos Anastasiou

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

  • Spyros Fountas

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

  • Konstantinos Arvanitis

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

Abstract

Precision viticulture is the application of site-specific techniques to vineyard production to improve grape quality and yield and minimize the negative effects on the environment. While there are various studies on the inherent spatial and temporal variability of vineyards, the assessment of the environmental impact of variable rate applications has attracted limited attention. In this study, two vineyards planted with different grapevine cultivars (Sauvignon Blanc and Syrah) were examined for four consecutive growing seasons (2013–2016). The first year, the two vineyards were only studied in terms of soil properties and crop characteristics, which resulted in the delineation of two distinct management zones for each field. For the following three years, variable rate nutrient application was applied to each management zone based on leaf canopy reflectance, where variable rate irrigation was based on soil moisture sensors, meteorological data, evapotranspiration calculation, and leaf canopy reflectance. Life cycle assessment was carried out to identify the effect of variable rate applications on vineyard agro-ecosystems. The results of variable rate nutrients and water application in the selected management zones as an average value of three growing seasons were compared to the conventional practice. It was found that the reduction of product carbon footprint (PCF) of grapes in Sauvignon Blanc between the two periods was 25% in total. Fertilizer production and distribution (direct) and application (indirect) was the most important sector of greenhouse gas (GHG) emissions reduction, accounting for 17.2%, and the within-farm energy use was the second ranked sector with 8.8% (crop residue management increase GHG emissions by 1.1%, while 0.1% GHG reduction is obtained by pesticide use). For the Syrah vineyard, where the production was less intensive, precision viticulture led to a PCF reduction of 28.3% compared to conventional production. Fertilizers contributed to this decrease by 27.6%, while within-farm energy use had an impact of 2.2% that was positive even though irrigation was increased, due to yield rise. Our results suggest that nutrient status management offers the greatest potential for reducing GHG emissions in both vineyard types. Variable rate irrigation also showed differences in comparison to conventional treatment, but to a lesser degree than variable rate fertilization. This difference between conventional practices and precision viticulture is noteworthy, and shows the potential of precision techniques to reduce the effect of viticulture on GHG emissions.

Suggested Citation

  • Athanasios T. Balafoutis & Stefanos Koundouras & Evangelos Anastasiou & Spyros Fountas & Konstantinos Arvanitis, 2017. "Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1997-:d:117277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/1997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/1997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael MacLeod & Vera Eory & Guillaume Gruère & Jussi Lankoski, 2015. "Cost-Effectiveness of Greenhouse Gas Mitigation Measures for Agriculture: A Literature Review," OECD Food, Agriculture and Fisheries Papers 89, OECD Publishing.
    2. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    3. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    4. Adewale, Cornelius & Higgins, Stewart & Granatstein, David & Stöckle, Claudio O. & Carlson, Bryan R. & Zaher, Usama E. & Carpenter-Boggs, Lynne, 2016. "Identifying hotspots in the carbon footprint of a small scale organic vegetable farm," Agricultural Systems, Elsevier, vol. 149(C), pages 112-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benedetta Esposito & Maria Rosaria Sessa & Daniela Sica & Ornella Malandrino, 2020. "Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    2. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    3. Maurizio Canavari & Marco Medici & Rungsaran Wongprawmas & Vilma Xhakollari & Silvia Russo, 2021. "A Path Model of the Intention to Adopt Variable Rate Irrigation in Northeast Italy," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    4. Nazzaro, Concetta & Stanco, Marcello & Uliano, Anna & Lerro, Marco & Marotta, Giuseppe, 2022. "Collective smart innovations and corporate governance models in Italian wine cooperatives: the opportunities of the farm-to-fork strategy," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 25(5), December.
    5. Daniele Sarri & Stefania Lombardo & Andrea Pagliai & Carolina Perna & Riccardo Lisci & Valentina De Pascale & Marco Rimediotti & Guido Cencini & Marco Vieri, 2020. "Smart Farming Introduction in Wine Farms: A Systematic Review and a New Proposal," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    6. Raimonda Zinkevičienė & Eglė Jotautienė & Algirdas Jasinskas & Zita Kriaučiūnienė & Kristina Lekavičienė & Vilma Naujokienė & Egidijus Šarauskis, 2022. "Determination of Properties of Loose and Granulated Organic Fertilizers and Qualitative Assessment of Fertilizer Spreading," Sustainability, MDPI, vol. 14(7), pages 1-14, April.
    7. Paris, Bas & Vandorou, Foteini & Balafoutis, Athanasios T. & Vaiopoulos, Konstantinos & Kyriakarakos, George & Manolakos, Dimitris & Papadakis, George, 2022. "Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Naim Rashidov & Maciej Chowaniak & Marcin Niemiec & Gulov Saidali Mamurovich & Masaidov Jamshed Gufronovich & Zofia Gródek-Szostak & Anna Szeląg-Sikora & Jakub Sikora & Maciej Kuboń & Monika Komorowsk, 2021. "Assessment of the Multiannual Impact of the Grape Training System on GHG Emissions in North Tajikistan," Energies, MDPI, vol. 14(19), pages 1-13, September.
    9. Anna Vatsanidou & Spyros Fountas & Vasileios Liakos & George Nanos & Nikolaos Katsoulas & Theofanis Gemtos, 2020. "Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard," Sustainability, MDPI, vol. 12(17), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    2. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    3. Daniele Sarri & Stefania Lombardo & Andrea Pagliai & Carolina Perna & Riccardo Lisci & Valentina De Pascale & Marco Rimediotti & Guido Cencini & Marco Vieri, 2020. "Smart Farming Introduction in Wine Farms: A Systematic Review and a New Proposal," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    4. Theodora Karanisa & Alexandre Amato & Renee Richer & Sara Abdul Majid & Cynthia Skelhorn & Sami Sayadi, 2021. "Agricultural Production in Qatar’s Hot Arid Climate," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    5. Marco Ammoniaci & Simon-Paolo Kartsiotis & Rita Perria & Paolo Storchi, 2021. "State of the Art of Monitoring Technologies and Data Processing for Precision Viticulture," Agriculture, MDPI, vol. 11(3), pages 1-20, February.
    6. Michael MacLeod & Vera Eory & William Wint & Alexandra Shaw & Pierre J. Gerber & Giuliano Cecchi & Raffaele Mattioli & Alasdair Sykes & Timothy Robinson, 2018. "Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    7. Feliciano, Diana & Nayak, Dali Rani & Vetter, Sylvia Helga & Hillier, Jon, 2017. "CCAFS-MOT - A tool for farmers, extension services and policy-advisors to identify mitigation options for agriculture," Agricultural Systems, Elsevier, vol. 154(C), pages 100-111.
    8. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    9. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    10. Xiuli Zhang & Yikun Pei & Yong Chen & Qianglong Song & Peilin Zhou & Yueqing Xia & Xiaochan Liu, 2022. "The Design and Experiment of Vertical Variable Cavity Base Fertilizer Fertilizing Apparatus," Agriculture, MDPI, vol. 12(11), pages 1-15, October.
    11. Schäuble, Dominik & Marian, Adela & Cremonese, Lorenzo, 2020. "Conditions for a cost-effective application of smart thermostat systems in residential buildings," Applied Energy, Elsevier, vol. 262(C).
    12. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    13. Marek Borowski & Piotr Życzkowski & Jianwei Cheng & Rafał Łuczak & Klaudia Zwolińska, 2020. "The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions—Electricity Prediction Using ANN," Energies, MDPI, vol. 13(17), pages 1-18, August.
    14. Pomi Shahbaz & Shamsheer ul Haq & Azhar Abbas & Zahira Batool & Bader Alhafi Alotaibi & Roshan K. Nayak, 2022. "Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    15. Otterbring, Tobias & Folwarczny, Michał, 2024. "Social validation, reciprocation, and sustainable orientation: Cultivating “clean†codes of conduct through social influence," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    16. García-Leal, Javiera & Espinoza Pérez, Andrea Teresa & Vásquez, Óscar C., 2023. "Towards the sustainable massive food services: An optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    17. Adamashvili Nino & Fiore Mariantonietta & Contò Francesco & La Sala Piermichele, 2020. "Ecosystem for Successful Agriculture. Collaborative Approach as a Driver for Agricultural Development," European Countryside, Sciendo, vol. 12(2), pages 242-256, June.
    18. Francisco Estrada & Luis Filipe Martins & Pierre Perron, 2017. "Characterizing and attributing the warming trend in sea and land surface temperatures," Boston University - Department of Economics - Working Papers Series WP2017-009, Boston University - Department of Economics.
    19. Zhao Xue & Jun Fu & Qiankun Fu & Xiaokang Li & Zhi Chen, 2023. "Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach," Agriculture, MDPI, vol. 13(10), pages 1-16, September.
    20. Qiu, Xin & Jin, Jianjun & He, Rui & Mao, Jiansu, 2022. "The deviation between the willingness and behavior of farmers to adopt electricity-saving tricycles and its influencing factors in Dazu District of China," Energy Policy, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1997-:d:117277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.