IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1633-d147841.html
   My bibliography  Save this article

Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa

Author

Listed:
  • Michael MacLeod

    (Land Economy, Environment and Society Group, SRUC, Edinburgh EH9 3JG, UK)

  • Vera Eory

    (Land Economy, Environment and Society Group, SRUC, Edinburgh EH9 3JG, UK)

  • William Wint

    (Department of Zoology, Environmental Research Group Oxford (ERGO), South Parks Road, Oxford OX1 3PS, UK)

  • Alexandra Shaw

    (AP Consultants, 22 Walworth Enterprise Centre, Duke Close, Andover SP10 5AP, UK)

  • Pierre J. Gerber

    (The World Bank Group, Agriculture and Food Global Practice, 1818 H Street N.W., Washington, DC 20433, USA
    Animal Production Systems Group, Wageningen University, P.O. Box 338, Wageningen 6708, The Netherlands)

  • Giuliano Cecchi

    (Food and Agriculture Organization of the United Nations (FAO), Sub-regional Office for Eastern Africa, CMC Road, P.O. Box 5536, Addis Ababa, Ethiopia)

  • Raffaele Mattioli

    (Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Viale delle Terme di Caracalla, 00153 Rome, Italy)

  • Alasdair Sykes

    (Land Economy, Environment and Society Group, SRUC, Edinburgh EH9 3JG, UK)

  • Timothy Robinson

    (Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Viale delle Terme di Caracalla, 00153 Rome, Italy)

Abstract

Increasing the production of meat and milk within sub-Saharan Africa should provide significant food security benefits. However, greenhouse gas (GHG) emissions represent a challenge, as cattle production in the region typically has high emissions intensity (EI), i.e., high rates of GHG emissions per unit of output. The high EI is caused by the relatively low production efficiencies in the region, which are in turn partly due to endemic cattle diseases. In theory, improved disease control should increase the efficiency and decrease the emissions intensity of livestock production; however quantitative analysis of the potential GHG mitigation effects of improved disease control in Africa is lacking. This paper seeks to respond to this by using a hybrid modelling approach to quantify the production and emissions effects of removing trypanosomiasis from East African cattle production systems. The emissions are quantified for each cattle production system using an excel version of GLEAM, the Food and Agriculture Organization’s Global Livestock Environmental Assessment Model. The results indicate that removing trypanosomiasis leads to a reduction in the emissions intensity per unit of protein produced of between 0% and 8%, driven mainly by the increases in milk yields and cow fertility rates. Despite the limitations, it is argued that the approach provides considerable scope for modelling the GHG impacts of disease interventions.

Suggested Citation

  • Michael MacLeod & Vera Eory & William Wint & Alexandra Shaw & Pierre J. Gerber & Giuliano Cecchi & Raffaele Mattioli & Alasdair Sykes & Timothy Robinson, 2018. "Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1633-:d:147841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael MacLeod & Vera Eory & Guillaume Gruère & Jussi Lankoski, 2015. "Cost-Effectiveness of Greenhouse Gas Mitigation Measures for Agriculture: A Literature Review," OECD Food, Agriculture and Fisheries Papers 89, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilkka Leinonen, 2019. "Achieving Environmentally Sustainable Livestock Production," Sustainability, MDPI, vol. 11(1), pages 1-5, January.
    2. Kiggundu, Nicholas & Ddungu, Stanley Peter & Wanyama, Joshua & Cherotich, Sam & Mpairwe, Denis & Zziwa, Emmanuel & Mutebi, Faizal & Falcucci, Alessandra, 2019. "Greenhouse gas emissions from Uganda's cattle corridor farming systems," Agricultural Systems, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schäuble, Dominik & Marian, Adela & Cremonese, Lorenzo, 2020. "Conditions for a cost-effective application of smart thermostat systems in residential buildings," Applied Energy, Elsevier, vol. 262(C).
    2. World Bank, 2016. "Making Climate Finance Work in Agriculture," World Bank Publications - Reports 24686, The World Bank Group.
    3. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    4. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    5. Kirsten Rae Ball & Sally Anne Power & Chris Brien & Sarah Woodin & Nathaniel Jewell & Bettina Berger & Elise Pendall, 2020. "High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    6. Daniele Sarri & Stefania Lombardo & Andrea Pagliai & Carolina Perna & Riccardo Lisci & Valentina De Pascale & Marco Rimediotti & Guido Cencini & Marco Vieri, 2020. "Smart Farming Introduction in Wine Farms: A Systematic Review and a New Proposal," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    7. Athanasios T. Balafoutis & Stefanos Koundouras & Evangelos Anastasiou & Spyros Fountas & Konstantinos Arvanitis, 2017. "Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    8. David Blandford & Katharine Hassapoyannes, 2018. "The role of agriculture in global GHG mitigation," OECD Food, Agriculture and Fisheries Papers 112, OECD Publishing.
    9. Pena-Levano, L. & Taheripour, F. & Tyner, W., 2018. "Cost comparison of climate change mitigation options," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277417, International Association of Agricultural Economists.
    10. Thomas Fellmann & Peter Witzke & Franz Weiss & Benjamin Van Doorslaer & Dusan Drabik & Ingo Huck & Guna Salputra & Torbjörn Jansson & Adrian Leip, 2018. "Major challenges of integrating agriculture into climate change mitigation policy frameworks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 451-468, March.
    11. Krimly, Tatjana & Angenendt, Elisabeth & Bahrs, Enno & Dabbert, Stephan, 2016. "Global warming potential and abatement costs of different peatland management options: A case study for the Pre-alpine Hill and Moorland in Germany," Agricultural Systems, Elsevier, vol. 145(C), pages 1-12.
    12. Hyland, J.J. & Styles, D. & Jones, D.L. & Williams, A.P., 2016. "Improving livestock production efficiencies presents a major opportunity to reduce sectoral greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 147(C), pages 123-131.
    13. Nainggolan, Doan & Hasler, Berit & Andersen, Hans E. & Gyldenkærne, Steen & Termansen, Mette, 2018. "Water Quality Management and Climate Change Mitigation: Cost-effectiveness of Joint Implementation in the Baltic Sea Region," Ecological Economics, Elsevier, vol. 144(C), pages 12-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1633-:d:147841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.