IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p873-d77047.html
   My bibliography  Save this article

Risk vs. Reward: A Methodology to Assess Investment in Marine Energy

Author

Listed:
  • John Hutcheson

    (Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3JL, UK)

  • Adrián De Andrés

    (Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3JL, UK)

  • Henry Jeffrey

    (Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3JL, UK)

Abstract

The majority of WEC (wave energy converter) projects are expensive and pose a large risk to a developer. Currently no developers have been successful in commercialising a WEC. So far, many wave energy feasibility studies have only considered the LCOE (levelised cost of electricity), assessing investment in marine energy technologies from a purely financial point of view. No previous studies have, however, explicitly accounted for development risk as well as the LCOE to determine the feasibility of a project. This paper proposes a new methodology that can be used to account for both risk and the LCOE to give a clearer picture of the feasibility of a WEC development. By combining the LCOE and risk score for a particular development, the “value for risk” can be calculated, presented here as the “RR ratio” (“Risk/Reward ratio”). A number of case studies were chosen to test the model, investigating the RR ratio for a number of different WEC technologies and ranking them to suggest an optimal development path for the industry. Results showed that projects that combine many innovative technologies provide the best “value for risk”. These devices overall had the highest risk, suggesting that multiple developers are likely required to collaborate in order to reduce the risk down to acceptable levels for each.

Suggested Citation

  • John Hutcheson & Adrián De Andrés & Henry Jeffrey, 2016. "Risk vs. Reward: A Methodology to Assess Investment in Marine Energy," Sustainability, MDPI, vol. 8(9), pages 1-44, August.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:873-:d:77047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farrell, Niall & Donoghue, Cathal O’ & Morrissey, Karyn, 2015. "Quantifying the uncertainty of wave energy conversion device cost for policy appraisal: An Irish case study," Energy Policy, Elsevier, vol. 78(C), pages 62-77.
    2. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Weather window analysis of Irish west coast wave data with relevance to operations & maintenance of marine renewables," Renewable Energy, Elsevier, vol. 52(C), pages 57-66.
    3. Fernando F. Suárez & James M. Utterback, 1995. "Dominant designs and the survival of firms," Strategic Management Journal, Wiley Blackwell, vol. 16(6), pages 415-430.
    4. Guanche, R. & de Andrés, A.D. & Simal, P.D. & Vidal, C. & Losada, I.J., 2014. "Uncertainty analysis of wave energy farms financial indicators," Renewable Energy, Elsevier, vol. 68(C), pages 570-580.
    5. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Vicinanza & Mariano Buccino, 2017. "A Helicopter View of the Special Issue on Wave Energy Converters," Sustainability, MDPI, vol. 9(2), pages 1-4, February.
    2. Raúl Cascajo & Rafael Molina & Luís Pérez-Rojas, 2022. "Sectoral Analysis of the Fundamental Criteria for the Evaluation of the Viability of Wave Energy Generation Facilities in Ports—Application of the Delphi Methodology," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Daniel Ganea & Valentin Amortila & Elena Mereuta & Eugen Rusu, 2017. "A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands," Sustainability, MDPI, vol. 9(6), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    2. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    3. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    4. López-Ruiz, Alejandro & Bergillos, Rafael J. & Ortega-Sánchez, Miguel, 2016. "The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation," Applied Energy, Elsevier, vol. 182(C), pages 191-203.
    5. Hipp, Ann & Binz, Christian, 2020. "Firm survival in complex value chains and global innovation systems: Evidence from solar photovoltaics," Research Policy, Elsevier, vol. 49(1).
    6. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    7. Farrell, Niall & Donoghue, Cathal O’ & Morrissey, Karyn, 2015. "Quantifying the uncertainty of wave energy conversion device cost for policy appraisal: An Irish case study," Energy Policy, Elsevier, vol. 78(C), pages 62-77.
    8. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration," Sustainability, MDPI, vol. 15(10), pages 1-32, May.
    9. Hagedoorn, John & Carayannis, Elias & Alexander, Jeffrey, 2001. "Strange bedfellows in the personal computer industry: technology alliances between IBM and Apple," Research Policy, Elsevier, vol. 30(5), pages 837-849, May.
    10. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    11. Cecere, Grazia & Corrocher, Nicoletta & Battaglia, Riccardo David, 2015. "Innovation and competition in the smartphone industry: Is there a dominant design?," Telecommunications Policy, Elsevier, vol. 39(3), pages 162-175.
    12. Tianna Bloise Thomaz & David Crooks & Encarni Medina-Lopez & Leonore van Velzen & Henry Jeffrey & Joseba Lopez Mendia & Raul Rodriguez Arias & Pablo Ruiz Minguela, 2019. "O&M Models for Ocean Energy Converters: Calibrating through Real Sea Data," Energies, MDPI, vol. 12(13), pages 1-20, June.
    13. Régis Coeurderoy & Rodolphe Durand, 2001. "La cohérence des choix stratégiques:l'impact des décisions d'entrée et des stratégies génériques sur la performance organisationnelle des firmes," Revue Finance Contrôle Stratégie, revues.org, vol. 4(3), pages 57-88, September.
    14. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    15. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    16. Karen Ruckman & Nilesh Saraf & Vallabh Sambamurthy, 2015. "Market Positioning by IT Service Vendors Through Imitation," Information Systems Research, INFORMS, vol. 26(1), pages 100-126, March.
    17. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    18. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    19. Najda-Janoszka, Marta, 2017. "Industry Transition - Challenges for Value Capture," MPRA Paper 81919, University Library of Munich, Germany.
    20. Gotsopoulos, Aleksios & Pitsakis, Konstantinos, 2024. "United we stand? Organizational groups and spinoff mortality in the context of academic entrepreneurship," Journal of Business Venturing, Elsevier, vol. 39(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:873-:d:77047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.