IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i8p749-d75346.html
   My bibliography  Save this article

Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model

Author

Listed:
  • Zhigong Peng

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    National Center of Efficient Irrigation Engineering and Technology Research—Beijing, Beijing 100048, China)

  • Baozhong Zhang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    National Center of Efficient Irrigation Engineering and Technology Research—Beijing, Beijing 100048, China)

  • Xueliang Cai

    (International Water Management Institute, Southern Africa Office 141, Cress well Street, Weavind Park, Pretoria 0184, South Africa)

  • Lei Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    National Center of Efficient Irrigation Engineering and Technology Research—Beijing, Beijing 100048, China)

Abstract

Irrigation is facing increasing pressure from other competitive water users to reduce water consumption in a water scarce region. Based on the Basin-wide Holistic Integrated Water Assessment (BHIWA) model, the effects of water management strategies on water balance in the dry regions of North China were analyzed. The results show that, with the decrease of irrigation water supply reliability (IWSR) and the increase of irrigation water use efficiency (WUE), irrigation water use decreased significantly, leading to reduced agriculture water consumption, and sustained ground water levels. Compared with the increase of WUE, the decrease of IWSR contributes more to reducing irrigation water consumption and protecting groundwater. Sensitivity tests show that among various water cycle components, irrigation water use is most sensitive to changes, followed by agriculture water consumption, and then groundwater level. Reducing IWSR is an effective strategy to reduce irrigation water consumption and promote sustainable water resources management, which could be the support of basic data and theory for regional water resources planning.

Suggested Citation

  • Zhigong Peng & Baozhong Zhang & Xueliang Cai & Lei Wang, 2016. "Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model," Sustainability, MDPI, vol. 8(8), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:749-:d:75346
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/8/749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/8/749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Tingting & Wang, Jinxia & Huang, Jikun, 2015. "Urbanization, agricultural water use, and regional and national crop production in China," Ecological Modelling, Elsevier, vol. 318(C), pages 226-235.
    2. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    3. Bao, Chao & Fang, Chuang-lin, 2007. "Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China," Ecological Economics, Elsevier, vol. 62(3-4), pages 508-517, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiang-Jen Wu & Jie-Sen Mai & Yi-Hong Lin & Keh-Chia Yeh, 2022. "Modeling Probabilistic-Based Reliability Analysis for Irrigation Water Supply Due to Uncertainties in Hydrological and Irrigation Factors," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
    2. d’Amore-Domenech, Rafael & Santiago, Óscar & Leo, Teresa J., 2020. "Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    2. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    3. Boyu Wang & Xiang Gao, 2021. "Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10038-10055, July.
    4. Mingguang Tu & Futao Wang & Yi Zhou & Shixin Wang, 2016. "Gridded Water Resource Distribution Simulation for China Based on Third-Order Basin Data from 2002," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    5. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    6. Yunqiang Liu & Jiuping Xu & Huawei Luo, 2014. "An Integrated Approach to Modelling the Economy-Society-Ecology System in Urbanization Process," Sustainability, MDPI, vol. 6(4), pages 1-27, April.
    7. Hailiang Ma & Nan-Ting Chou & Lei Wang, 2016. "Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    8. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi, 2016. "An Integrated Approach to Explore the Relationship Among Economic, Construction Land Use, and Ecology Subsystems in Zhejiang Province, China," Sustainability, MDPI, vol. 8(5), pages 1-20, May.
    9. Guangdong Li & Chuanglin Fang, 2014. "Analyzing the multi-mechanism of regional inequality in China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 155-182, January.
    10. Chao Bao & Dongmei He, 2015. "The Causal Relationship between Urbanization, Economic Growth and Water Use Change in Provincial China," Sustainability, MDPI, vol. 7(12), pages 1-10, December.
    11. Mingxing Chen & Hua Zhang & Weidong Liu & Wenzhong Zhang, 2014. "The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    12. Yi Huang & Qianqian Qiu & Yehua Sheng & Xiangqiang Min & Yuwei Cao, 2019. "Exploring the Relationship between Urbanization and the Eco-Environment: A Case Study of Beijing," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    13. Li, Mo & Guo, Ping & Singh, Vijay P. & Yang, Gaiqiang, 2016. "An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation," Agricultural Water Management, Elsevier, vol. 177(C), pages 10-23.
    14. Chao Bao & Jianjun Zou, 2017. "Exploring the Coupling and Decoupling Relationships between Urbanization Quality and Water Resources Constraint Intensity: Spatiotemporal Analysis for Northwest China," Sustainability, MDPI, vol. 9(11), pages 1-17, October.
    15. Huailin Zhang & Zhibin Zhang & Jianhong Dong & Fawen Gao & Wenbin Zhang & Weimin Gong, 2020. "Spatial production or sustainable development? An empirical research on the urbanization of less-developed regions based on the case of Hexi Corridor in China," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    16. Chao Bao & Chuang-lin Fang, 2012. "Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 531-552, January.
    17. Hong, Yu & Berentsen, Paul & Heerink, Nico & Shi, Minjun & van der Werf, Wopke, 2019. "The future of intercropping under growing resource scarcity and declining grain prices - A model analysis based on a case study in Northwest China," Agricultural Systems, Elsevier, vol. 176(C).
    18. Yiru Guo & Yan Hu & Ke Shi & Yuriy Bilan, 2020. "Valuation of Water Resource Green Efficiency Based on SBM–TOBIT Panel Model: Case Study from Henan Province, China," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    19. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    20. Xiuli Liu & Xikang Chen & Shouyang Wang, 2009. "Evaluating and Predicting Shadow Prices of Water Resources in China and Its Nine Major River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1467-1478, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:749-:d:75346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.