IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i4p360-d68133.html
   My bibliography  Save this article

Joint Environmental and Economical Analysis of Wastewater Treatment Plants Control Strategies: A Benchmark Scenario Analysis

Author

Listed:
  • Montse Meneses

    (Departament de Telecomunicació i d’Enginyeria de Sistemes, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
    These authors contributed equally to this work.)

  • Henry Concepción

    (Departament de Telecomunicació i d’Enginyeria de Sistemes, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
    These authors contributed equally to this work.)

  • Ramon Vilanova

    (Departament de Telecomunicació i d’Enginyeria de Sistemes, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
    These authors contributed equally to this work.)

Abstract

In this paper, a joint environmental and economic analysis of different Wastewater Treatment Plant (WWTP) control strategies is carried out. The assessment is based on the application of the Life Cycle Assessment (LCA) as a method to evaluate the environmental impact and the Benchmark Simulation Model No. 1 (BSM1). The BSM1 is taken as the benchmark scenario used to implement the control strategies. The Effluent Quality Index (EQI) and the Overall Cost Index (OCI) are two indicators provided by BSM1 and used to evaluate the plant’s performance from the effluent quality and the economic points of view, respectively. This work conducts a combined analysis and assessment of ten different control strategies defined to operate a wastewater treatment plant. This analysis includes the usual economic and performance indexes provided by BSM1 joined with the LCA analysis that determines the environmental impact linked to each one of the considered control strategies. It is shown how to get an overall evaluation of the environmental effects by using a normalized graphical representation that can be easily used to compare control strategies from the environmental impact point of view. The use of only the BSM1 indexes provides an assessment that leads to a clustering of control strategies according to the cost/quality tradeoff they show. Therefore, regarding the cost/quality tradeoff, all strategies in the same group are almost equal and do not provide an indication on how to proceed in order to select the appropriate one. It is therefore shown how the fact of adding a new, complementary, evaluation (LCA based) allows either to reinforce a decision that could be taken solely on the basis of the EQI/OCI tradeoff or to select one control strategy among the others.

Suggested Citation

  • Montse Meneses & Henry Concepción & Ramon Vilanova, 2016. "Joint Environmental and Economical Analysis of Wastewater Treatment Plants Control Strategies: A Benchmark Scenario Analysis," Sustainability, MDPI, vol. 8(4), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:360-:d:68133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/4/360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/4/360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinhua Shen & Raghava R. Kommalapati & Ziaul Huque, 2015. "The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    2. Svetlana Pushkar, 2016. "Life Cycle Assessment of Flat Roof Technologies for Office Buildings in Israel," Sustainability, MDPI, vol. 8(1), pages 1-10, January.
    3. Ioannis Arzoumanidis & Andrea Raggi & Luigia Petti, 2014. "Considerations When Applying Simplified LCA Approaches in the Wine Sector," Sustainability, MDPI, vol. 6(8), pages 1-11, August.
    4. Jorgelina C. Pasqualino & Montse Meneses & Francesc Castells, 2011. "Life Cycle Assessment of Urban Wastewater Reclamation and Reuse Alternatives," Journal of Industrial Ecology, Yale University, vol. 15(1), pages 49-63, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Félix Hernández-del-Olmo & Elena Gaudioso & Raquel Dormido & Natividad Duro, 2016. "Energy and Environmental Efficiency for the N-Ammonia Removal Process in Wastewater Treatment Plants by Means of Reinforcement Learning," Energies, MDPI, vol. 9(9), pages 1-17, September.
    2. Song, Malin & Zheng, Wanping & Wang, Shuhong, 2017. "Measuring green technology progress in large-scale thermoelectric enterprises based on Malmquist–Luenberger life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 261-269.
    3. Andrea Guerrini & Giulia Romano & Simone Ferretti & Donatella Fibbi & Daniele Daddi, 2016. "A Performance Measurement Tool Leading Wastewater Treatment Plants toward Economic Efficiency and Sustainability," Sustainability, MDPI, vol. 8(12), pages 1-14, November.
    4. S. Revollar & R. Vilanova & P. Vega & M. Francisco & M. Meneses, 2020. "Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective," Sustainability, MDPI, vol. 12(3), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    2. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    3. Riccardo Accorsi & Lorenzo Versari & Riccardo Manzini, 2015. "Glass vs. Plastic: Life Cycle Assessment of Extra-Virgin Olive Oil Bottles across Global Supply Chains," Sustainability, MDPI, vol. 7(3), pages 1-23, March.
    4. Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.
    5. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    6. Karolina Szalkowska & Monika Zubrowska-Sudol, 2023. "Opportunities for Water Reuse Implementation in Metropolitan Areas in a Complex Approach with an LCA Analysis, Taking Warsaw, Poland as an Example," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    7. João Gomes Ferreira & Mário de Matos & Hugo Silva & Afonso Franca & Pedro Duarte, 2021. "Sustainable Campus: The Experience of the University of Lisbon at IST," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    8. Meneses-Jácome, Alexander & Diaz-Chavez, Rocío & Velásquez-Arredondo, Héctor I. & Cárdenas-Chávez, Diana L. & Parra, Roberto & Ruiz-Colorado, Angela A., 2016. "Sustainable Energy from agro-industrial wastewaters in Latin-America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1249-1262.
    9. Sueli De Fátima de Oliveira Miranda Santos & Cassiano Moro Piekarski & Cássia Maria Lie Ugaya & Danilo Barros Donato & Aldo Braghini Júnior & Antonio Carlos De Francisco & Ana Márcia Macedo Ladeira Ca, 2017. "Life Cycle Analysis of Charcoal Production in Masonry Kilns with and without Carbonization Process Generated Gas Combustion," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    10. Patrik Mouron & Christian Willersinn & Sabrina Möbius & Jens Lansche, 2016. "Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    11. Carmen Ferrara & Giovanni De Feo, 2018. "Life Cycle Assessment Application to the Wine Sector: A Critical Review," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    12. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    13. Willem Haanstra & Willem-Jan Rensink & Alberto Martinetti & Jan Braaksma & Leo van Dongen, 2020. "Design for Sustainable Public Transportation: LCA-Based Tooling for Guiding Early Design Priorities," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
    14. Vance, C. & Sweeney, J. & Murphy, F., 2022. "Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Xia Yang & Qiong Zhang & Sarina J. Ergas, 2023. "Enhancement of System and Environmental Performance of High Solids Anaerobic Digestion of Lignocellulosic Banana Waste by Biochar Addition," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    16. Lin, Wen-Shyong & Lee, Mengshan & Huang, Yu-Cheng & Den, Walter, 2015. "Identifying water recycling strategy using multivariate statistical analysis for high-tech industries in Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 35-42.
    17. Benedetta Esposito & Maria Rosaria Sessa & Daniela Sica & Ornella Malandrino, 2020. "Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    18. Sota Makino & Takeshi Onishi & Akika Itoh & Issei Sato & Tomohumi Huzita & Chihiro Kayo, 2021. "Sustainable Campus: Reducing Environmental and Financial Burdens by Using Pruned Branches for On-Campus Energy," Sustainability, MDPI, vol. 13(13), pages 1-15, July.
    19. Unrean, Pornkamol & Lai Fui, Bridgid Chin & Rianawati, Elisabeth & Acda, Menandro, 2018. "Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies," Energy, Elsevier, vol. 151(C), pages 581-593.
    20. Pauline Deutz & Giuseppe Ioppolo, 2015. "From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology," Sustainability, MDPI, vol. 7(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:360-:d:68133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.