Machine Learning-Based Energy Consumption Estimation of Wastewater Treatment Plants in Greece
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Zijun & Kusiak, Andrew & Zeng, Yaohui & Wei, Xiupeng, 2016. "Modeling and optimization of a wastewater pumping system with data-mining methods," Applied Energy, Elsevier, vol. 164(C), pages 303-311.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Johnson, Hilary A. & Simon, Kevin P. & Slocum, Alexander H., 2021. "Data analytics and pump control in a wastewater treatment plant," Applied Energy, Elsevier, vol. 299(C).
- Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Oreste Fecarotta & Armando Carravetta & Maria Cristina Morani & Roberta Padulano, 2018. "Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions," Resources, MDPI, vol. 7(4), pages 1-20, November.
- Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
- Xiaoli Feng & Baoyun Qiu & Yongxing Wang, 2020. "Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm," Energies, MDPI, vol. 13(18), pages 1-19, September.
- Torregrossa, Dario & Hansen, Joachim & Hernández-Sancho, Francesc & Cornelissen, Alex & Schutz, Georges & Leopold, Ulrich, 2017. "A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants," Applied Energy, Elsevier, vol. 208(C), pages 1430-1440.
- Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
- Francesco Calise & Ursula Eicker & Juergen Schumacher & Maria Vicidomini, 2020. "Wastewater Treatment Plant: Modelling and Validation of an Activated Sludge Process," Energies, MDPI, vol. 13(15), pages 1-20, July.
- Katarzyna Gładyszewska-Fiedoruk & Maria Jolanta Sulewska, 2020. "Thermal Comfort Evaluation Using Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs)," Energies, MDPI, vol. 13(3), pages 1-15, January.
- Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
- Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Alessandra Infante & Maria Vicidomini, 2020. "Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects," Energies, MDPI, vol. 13(11), pages 1-23, May.
- Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Akbaş, Halil & Bilgen, Bilge, 2017. "An integrated fuzzy QFD and TOPSIS methodology for choosing the ideal gas fuel at WWTPs," Energy, Elsevier, vol. 125(C), pages 484-497.
- Kan, Guangyuan & Zhang, Mengjie & Liang, Ke & Wang, Hao & Jiang, Yunzhong & Li, Jiren & Ding, Liuqian & He, Xiaoyan & Hong, Yang & Zuo, Depeng & Bao, Zhenxin & Li, Chaochao, 2018. "Improving water quantity simulation & forecasting to solve the energy-water-food nexus issue by using heterogeneous computing accelerated global optimization method," Applied Energy, Elsevier, vol. 210(C), pages 420-433.
- Zhang, Chaobo & Xue, Xue & Zhao, Yang & Zhang, Xuejun & Li, Tingting, 2019. "An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Zong Woo Geem & Sung Yong Chung & Jin-Hong Kim, 2018. "Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence," Complexity, Hindawi, vol. 2018, pages 1-8, April.
- Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.
- Levon Gevorkov & José Luis Domínguez-García & Lluis Trilla Romero, 2022. "Review on Solar Photovoltaic-Powered Pumping Systems," Energies, MDPI, vol. 16(1), pages 1-21, December.
More about this item
Keywords
wastewater treatment plants; neural networks; predicting models; energy consumption; attribute selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7408-:d:1273220. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.