IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1268-d84649.html
   My bibliography  Save this article

Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

Author

Listed:
  • Lvjiang Yin

    (The State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    School of Economics and Management, Hubei University of Automotive Technology, Shiyan 442002, China)

  • Xinyu Li

    (The State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Chao Lu

    (The State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Liang Gao

    (The State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT) production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T), cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA) is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2), Multiobjective Particle Swarm Optimization (OMOPSO), and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D). Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

Suggested Citation

  • Lvjiang Yin & Xinyu Li & Chao Lu & Liang Gao, 2016. "Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm," Sustainability, MDPI, vol. 8(12), pages 1-33, December.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1268-:d:84649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    2. Dvir Shabtay & George Steiner, 2008. "The single-machine earliness-tardiness scheduling problem with due date assignment and resource-dependent processing times," Annals of Operations Research, Springer, vol. 159(1), pages 25-40, March.
    3. J M S Valente, 2010. "Beam search heuristics for quadratic earliness and tardiness scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 620-631, April.
    4. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    5. Yano, Candace Arai & Kim, Yeong-Dae, 1991. "Algorithms for a class of single-machine weighted tardiness and earliness problems," European Journal of Operational Research, Elsevier, vol. 52(2), pages 167-178, May.
    6. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2013. "Flow shop scheduling with peak power consumption constraints," Annals of Operations Research, Springer, vol. 206(1), pages 115-145, July.
    7. Baker, Kenneth R., 2014. "Minimizing earliness and tardiness costs in stochastic scheduling," European Journal of Operational Research, Elsevier, vol. 236(2), pages 445-452.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adebola Orogun & Oluwaseun Fadeyi & Ondrej Krejcar, 2019. "Sustainable Communication Systems: A Graph-Labeling Approach for Cellular Frequency Allocation in Densely-Populated Areas," Future Internet, MDPI, vol. 11(9), pages 1-14, August.
    2. Rujapa Nanthapodej & Cheng-Hsiang Liu & Krisanarach Nitisiri & Sirorat Pattanapairoj, 2021. "Hybrid Differential Evolution Algorithm and Adaptive Large Neighborhood Search to Solve Parallel Machine Scheduling to Minimize Energy Consumption in Consideration of Machine-Load Balance Problems," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    3. Yongmao Xiao & Renqing Zhao & Wei Yan & Xiaoyong Zhu, 2022. "Analysis and Evaluation of Energy Consumption and Carbon Emission Levels of Products Produced by Different Kinds of Equipment Based on Green Development Concept," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    4. Adrian Kampa & Iwona Paprocka, 2021. "Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times," Energies, MDPI, vol. 14(21), pages 1-25, November.
    5. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    6. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    7. Jin Huang & Liangliang Jin & Chaoyong Zhang, 2017. "Mathematical Modeling and a Hybrid NSGA-II Algorithm for Process Planning Problem Considering Machining Cost and Carbon Emission," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    8. Radosław Winiczenko & Krzysztof Górnicki & Agnieszka Kaleta & Monika Janaszek-Mańkowska & Aneta Choińska & Jędrzej Trajer, 2018. "Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    9. Chen Peng & Tao Peng & Yi Zhang & Renzhong Tang & Luoke Hu, 2018. "Minimising Non-Processing Energy Consumption and Tardiness Fines in a Mixed-Flow Shop," Energies, MDPI, vol. 11(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    2. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    3. Alvarez-Meaza, Izaskun & Zarrabeitia-Bilbao, Enara & Rio-Belver, Rosa-María & Garechana-Anacabe, Gaizka, 2021. "Green scheduling to achieve green manufacturing: Pursuing a research agenda by mapping science," Technology in Society, Elsevier, vol. 67(C).
    4. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    5. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    6. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    7. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    8. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    9. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    10. Massimo Bertolini & Francesco Leali & Davide Mezzogori & Cristina Renzi, 2023. "A Keyword, Taxonomy and Cartographic Research Review of Sustainability Concepts for Production Scheduling in Manufacturing Systems," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    11. Ding, Jian-Ya & Song, Shiji & Wu, Cheng, 2016. "Carbon-efficient scheduling of flow shops by multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 248(3), pages 758-771.
    12. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    13. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    14. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Anghinolfi, Davide & Paolucci, Massimo & Ronco, Roberto, 2021. "A bi-objective heuristic approach for green identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 289(2), pages 416-434.
    16. Trevino-Martinez, Samuel & Sawhney, Rapinder & Shylo, Oleg, 2022. "Energy-carbon footprint optimization in sequence-dependent production scheduling," Applied Energy, Elsevier, vol. 315(C).
    17. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    18. Lingye Tan & Tiong Lee Kong & Ziyang Zhang & Ahmed Sayed M. Metwally & Shubham Sharma & Kanta Prasad Sharma & Sayed M. Eldin & Dominik Zimon, 2023. "Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data," Sustainability, MDPI, vol. 15(9), pages 1-37, May.
    19. Fang Wang & Yunqing Rao & Chaoyong Zhang & Qiuhua Tang & Liping Zhang, 2016. "Estimation of Distribution Algorithm for Energy-Efficient Scheduling in Turning Processes," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    20. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1268-:d:84649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.