IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i8p10709-10732d53874.html
   My bibliography  Save this article

Integrated Bioenergy and Food Production—A German Survey on Structure and Developments of Anaerobic Digestion in Organic Farming Systems

Author

Listed:
  • Benjamin Blumenstein

    (Faculty of Organic Agricultural Sciences, Department of Farm Management, University of Kassel, Steinstr. 19, Witzenhausen 37213, Germany
    These authors contributed equally to this research paper.)

  • Torsten Siegmeier

    (Faculty of Organic Agricultural Sciences, Department of Farm Management, University of Kassel, Steinstr. 19, Witzenhausen 37213, Germany
    These authors contributed equally to this research paper.)

  • Carsten Bruckhaus

    (Faculty of Organic Agricultural Sciences, Department of Farm Management, University of Kassel, Steinstr. 19, Witzenhausen 37213, Germany)

  • Victor Anspach

    (Faculty of Organic Agricultural Sciences, Department of Farm Management, University of Kassel, Steinstr. 19, Witzenhausen 37213, Germany)

  • Detlev Möller

    (Faculty of Organic Agricultural Sciences, Department of Farm Management, University of Kassel, Steinstr. 19, Witzenhausen 37213, Germany)

Abstract

Rising global energy needs and limited fossil fuel reserves have led to increased use of renewable energies. In Germany, this has entailed massive exploitation of agricultural biomass for biogas generation, associated with unsustainable farming practices. Organic agriculture not only reduces negative environmental impacts, organic farmers were also prime movers in anaerobic digestion (AD) in Germany. This study’s aim was to identify the structure, development, and characteristics of biogas production associated with organic farming systems in order to estimate further development, as well as energetic and associated agronomic potentials. Surveys were conducted among organic farms with AD technology. 144 biogas plants could be included in the analysis. Total installed electrical capacity was 30.8 MW el , accounting for only 0.8% of the total installed electrical capacity in the German biogas sector. Recently, larger plant types (>250 kW el ) with increased use of (also purchased) energy crops have emerged. Farmers noticed increases in yields (22% on average) and quality of cash crops in arable farming through integrated biogas production. In conclusion, although the share of AD in organic farming is relatively small it can provide various complementary socio-ecological benefits such as the enhancement of food output through digestate fertilization without additional need for land, while simultaneously reducing greenhouse gas emissions from livestock manures and soils. However, to achieve this eco-functional intensification, AD systems and their management have to be well adapted to farm size and production focus and based primarily on residue biomass.

Suggested Citation

  • Benjamin Blumenstein & Torsten Siegmeier & Carsten Bruckhaus & Victor Anspach & Detlev Möller, 2015. "Integrated Bioenergy and Food Production—A German Survey on Structure and Developments of Anaerobic Digestion in Organic Farming Systems," Sustainability, MDPI, vol. 7(8), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:8:p:10709-10732:d:53874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/8/10709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/8/10709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haas, Reinhard & Panzer, Christian & Resch, Gustav & Ragwitz, Mario & Reece, Gemma & Held, Anne, 2011. "A historical review of promotion strategies for electricity from renewable energy sources in EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1003-1034, February.
    2. Reiche, Danyel & Bechberger, Mischa, 2004. "Policy differences in the promotion of renewable energies in the EU member states," Energy Policy, Elsevier, vol. 32(7), pages 843-849, May.
    3. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    4. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    5. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.
    6. Kuhnert, Heike & Behrens, Gesine & Hamm, Ulrich & Müller, Henriette & Nieberg, Hiltrud & Sanders, Jürn & Strohm, Renate, 2013. "Ausstiege aus dem ökologischen Landbau: Umfang - Gründe - Handlungsoptionen," Thünen Reports 3, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    7. Monteiro, Eliseu & Mantha, Vishveshwar & Rouboa, Abel, 2011. "Prospective application of farm cattle manure for bioenergy production in Portugal," Renewable Energy, Elsevier, vol. 36(2), pages 627-631.
    8. Schneider, Uwe A. & Havlík, Petr & Schmid, Erwin & Valin, Hugo & Mosnier, Aline & Obersteiner, Michael & Böttcher, Hannes & Skalský, Rastislav & Balkovic, Juraj & Sauer, Timm & Fritz, Steffen, 2011. "Impacts of population growth, economic development, and technical change on global food production and consumption," Agricultural Systems, Elsevier, vol. 104(2), pages 204-215, February.
    9. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    10. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    11. Muller, Adrian, 2006. "Sustainable Agriculture and the Production of Biomass for Energy Use," Working Papers in Economics 216, University of Gothenburg, Department of Economics, revised 01 Aug 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koppelmäki, Kari & Parviainen, Tuure & Virkkunen, Elina & Winquist, Erika & Schulte, Rogier P.O. & Helenius, Juha, 2019. "Ecological intensification by integrating biogas production into nutrient cycling: Modeling the case of Agroecological Symbiosis," Agricultural Systems, Elsevier, vol. 170(C), pages 39-48.
    2. Marco Baldi & Maria Cristina Collivignarelli & Alessandro Abbà & Ilaria Benigna, 2018. "The Valorization of Ammonia in Manure Digestate by Means of Alternative Stripping Reactors," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    3. Blumenstein, Benjamin & Siegmeier, Torsten & Selsam, Franziska & Möller, Detlev, 2018. "A case of sustainable intensification: Stochastic farm budget optimization considering internal economic benefits of biogas production in organic agriculture," Agricultural Systems, Elsevier, vol. 159(C), pages 78-92.
    4. Hubert Prask & Józef Szlachta & Małgorzata Fugol & Leszek Kordas & Agnieszka Lejman & Franciszek Tużnik & Filip Tużnik, 2018. "Sustainability Biogas Production from Ensiled Plants Consisting of the Transformation of the Digestate into a Valuable Organic-Mineral Granular Fertilizer," Sustainability, MDPI, vol. 10(3), pages 1-13, February.
    5. Abdo, Hafez & Ackrill, Rob, 2021. "On-farm anaerobic digestion: A disaggregated analysis of the policy challenges for greater uptake," Energy Policy, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blumenstein, Benjamin & Siegmeier, Torsten & Selsam, Franziska & Möller, Detlev, 2018. "A case of sustainable intensification: Stochastic farm budget optimization considering internal economic benefits of biogas production in organic agriculture," Agricultural Systems, Elsevier, vol. 159(C), pages 78-92.
    2. Martinát, Stanislav & Navrátil, Josef & Dvořák, Petr & Van der Horst, Dan & Klusáček, Petr & Kunc, Josef & Frantál, Bohumil, 2016. "Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic," Renewable Energy, Elsevier, vol. 95(C), pages 85-97.
    3. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    4. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    5. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    6. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    7. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    8. de la Hoz, Jordi & Martín, Helena & Ballart, Jordi & Córcoles, Felipe & Graells, Moisès, 2013. "Evaluating the new control structure for the promotion of grid connected photovoltaic systems in Spain: Performance analysis of the period 2008–2010," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 541-554.
    9. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    10. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    11. Pablo-Romero, María del P. & Sánchez-Braza, Antonio & Salvador-Ponce, Jesús & Sánchez-Labrador, Natalia, 2017. "An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1366-1379.
    12. Pinto, Aimé & Zilles, Roberto, 2014. "Reactive power excess charging in grid-connected PV systems in Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 47-52.
    13. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    14. Dazhuan Ge & Hualou Long & Li Ma & Yingnan Zhang & Shuangshuang Tu, 2017. "Analysis Framework of China’s Grain Production System: A Spatial Resilience Perspective," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    15. Luz Maria Castro & Baltazar Calvas & Thomas Knoke, 2015. "Ecuadorian Banana Farms Should Consider Organic Banana with Low Price Risks in Their Land-Use Portfolios," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-23, March.
    16. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    17. Lombardi, G.V. & Parrini, Silvia & Atzori, R. & Stefani, G. & Romano, D. & Gastaldi, M. & Liu, G., 2021. "Sustainable agriculture, food security and diet diversity. The case study of Tuscany, Italy," Ecological Modelling, Elsevier, vol. 458(C).
    18. Rial, Rafael Cardoso, 2024. "Biofuels versus climate change: Exploring potentials and challenges in the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    19. Diogo, V. & Koomen, E. & Kuhlman, T., 2015. "An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study," Agricultural Systems, Elsevier, vol. 139(C), pages 1-16.
    20. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:8:p:10709-10732:d:53874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.