IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v170y2019icp39-48.html
   My bibliography  Save this article

Ecological intensification by integrating biogas production into nutrient cycling: Modeling the case of Agroecological Symbiosis

Author

Listed:
  • Koppelmäki, Kari
  • Parviainen, Tuure
  • Virkkunen, Elina
  • Winquist, Erika
  • Schulte, Rogier P.O.
  • Helenius, Juha

Abstract

There is growing demand to produce both food and renewable energy in a sustainable manner, while avoiding competition between food and energy production. In our study, we investigated the potential of harnessing biogas production into nutrient recycling in an integrated system of organic food production and food processing. We used the case of Agroecological Symbiosis (AES) at Palopuro, which is a combination of three farms, a biogas plant, and a bakery, as a case to explore how biogas production using feedstocks from the farms can be used to improve nutrient cycling, and to calculate how much energy could be produced from the within-system feedstocks. The current system (CS) used in organic farms, and the integrated farm and food processing AES system, were analyzed using Substance Flow analysis. In the AES, annual nitrogen (N) and phosphorus (P) surpluses were projected to be reduced from 95 kg ha−1 to 36 kg ha−1 and from 3.4 kg ha−1 to −0.5 kg ha−1 respectively, compared to the CS. Biogas produced from green manure leys as the major feedstock, produced 2809 MWh a−1. This was 70% more than the energy consumed (1650 MWh a−1) in the systemand thus the AES system turned out to be a net energy producer. Results demonstrated the potential of biogas production to enhance the transition to bioenergy, nutrient recycling, and crop productivity in renewable localized farming and food systems.

Suggested Citation

  • Koppelmäki, Kari & Parviainen, Tuure & Virkkunen, Elina & Winquist, Erika & Schulte, Rogier P.O. & Helenius, Juha, 2019. "Ecological intensification by integrating biogas production into nutrient cycling: Modeling the case of Agroecological Symbiosis," Agricultural Systems, Elsevier, vol. 170(C), pages 39-48.
  • Handle: RePEc:eee:agisys:v:170:y:2019:i:c:p:39-48
    DOI: 10.1016/j.agsy.2018.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18304736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blumenstein, Benjamin & Siegmeier, Torsten & Selsam, Franziska & Möller, Detlev, 2018. "A case of sustainable intensification: Stochastic farm budget optimization considering internal economic benefits of biogas production in organic agriculture," Agricultural Systems, Elsevier, vol. 159(C), pages 78-92.
    2. Benjamin Blumenstein & Torsten Siegmeier & Carsten Bruckhaus & Victor Anspach & Detlev Möller, 2015. "Integrated Bioenergy and Food Production—A German Survey on Structure and Developments of Anaerobic Digestion in Organic Farming Systems," Sustainability, MDPI, vol. 7(8), pages 1-24, August.
    3. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.
    4. Willi Haas & Fridolin Krausmann & Dominik Wiedenhofer & Markus Heinz, 2015. "How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 765-777, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyytimäki, Jari & Assmuth, Timo & Paloniemi, Riikka & Pyysiäinen, Jarkko & Rantala, Salla & Rikkonen, Pasi & Tapio, Petri & Vainio, Annukka & Winquist, Erika, 2021. "Two sides of biogas: Review of ten dichotomous argumentation lines of sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Romera, A.J. & Bos, A.P. & Neal, M. & Eastwood, C.R. & Chapman, D. & McWilliam, W. & Royds, D. & O'Connor, C. & Brookes, R. & Connolly, J. & Hall, P. & Clinton, P.W., 2020. "Designing future dairy systems for New Zealand using reflexive interactive design," Agricultural Systems, Elsevier, vol. 181(C).
    3. Ryschawy, Julie & Grillot, Myriam & Charmeau, Anaïs & Pelletier, Aude & Moraine, Marc & Martin, Guillaume, 2022. "A participatory approach based on the serious game Dynamix to co-design scenarios of crop-livestock integration among farms," Agricultural Systems, Elsevier, vol. 201(C).
    4. Vanessa Burg & Farzin Golzar & Gillianne Bowman & Stefanie Hellweg & Ramin Roshandel, 2021. "Symbiosis opportunities between food and energy system: The potential of manure‐based biogas as heating source for greenhouse production," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 648-662, June.
    5. Schreefel, L. & van Zanten, H.H.E. & Groot, J.C.J. & Timler, C.J. & Zwetsloot, M.J. & Schrijver, A. Pas & Creamer, R.E. & Schulte, R.P.O. & de Boer, I.J.M., 2022. "Tailor-made solutions for regenerative agriculture in the Netherlands," Agricultural Systems, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blumenstein, Benjamin & Siegmeier, Torsten & Selsam, Franziska & Möller, Detlev, 2018. "A case of sustainable intensification: Stochastic farm budget optimization considering internal economic benefits of biogas production in organic agriculture," Agricultural Systems, Elsevier, vol. 159(C), pages 78-92.
    2. Wajad Ulfat & Ayesha Mohyuddin & Muhammad Amjad & Tonni Agustiono Kurniawan & Beenish Mujahid & Sohail Nadeem & Mohsin Javed & Adnan Amjad & Abdul Qayyum Ashraf & Mohd Hafiz Dzarfan Othman & Sadaful H, 2023. "Reuse of Buffing Dust-Laden Tanning Waste Hybridized with Poly- Styrene for Fabrication of Thermal Insulation Materials," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    3. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    4. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    5. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    6. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    7. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    8. Anne P. M. Velenturf & Phil Purnell, 2017. "Resource Recovery from Waste: Restoring the Balance between Resource Scarcity and Waste Overload," Sustainability, MDPI, vol. 9(9), pages 1-17, September.
    9. Yana Us & Tetyana Pimonenko & Oleksii Lyulyov, 2023. "Corporate Social Responsibility and Renewable Energy Development for the Green Brand within SDGs: A Meta-Analytic Review," Energies, MDPI, vol. 16(5), pages 1-18, February.
    10. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    11. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    12. Colin M. Rose & Julia A. Stegemann, 2018. "From Waste Management to Component Management in the Construction Industry," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    13. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2017. "A stock-flow-fund ecological macroeconomic model," Ecological Economics, Elsevier, vol. 131(C), pages 191-207.
    14. Piciu Gabriela-Cornelia, 2021. "Ways To Accelerate The Circular Economy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 129-134, October.
    15. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2018. "Climate Change, Financial Stability and Monetary Policy," Ecological Economics, Elsevier, vol. 152(C), pages 219-234.
    16. Benjamin Blumenstein & Torsten Siegmeier & Carsten Bruckhaus & Victor Anspach & Detlev Möller, 2015. "Integrated Bioenergy and Food Production—A German Survey on Structure and Developments of Anaerobic Digestion in Organic Farming Systems," Sustainability, MDPI, vol. 7(8), pages 1-24, August.
    17. Concepción Garcés-Ayerbe & Pilar Rivera-Torres & Inés Suárez-Perales & Dante I. Leyva-de la Hiz, 2019. "Is It Possible to Change from a Linear to a Circular Economy? An Overview of Opportunities and Barriers for European Small and Medium-Sized Enterprise Companies," IJERPH, MDPI, vol. 16(5), pages 1-15, March.
    18. Oksana Marinina & Natalia Kirsanova & Marina Nevskaya, 2022. "Circular Economy Models in Industry: Developing a Conceptual Framework," Energies, MDPI, vol. 15(24), pages 1-21, December.
    19. Javeed, Sohail Ahmad & Akram, Umair, 2024. "The factors behind block-chain technology that boost the circular economy: An organizational perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    20. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:170:y:2019:i:c:p:39-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.