IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i1p898-915d44695.html
   My bibliography  Save this article

Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh

Author

Listed:
  • Md. Ruhul Amin

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China
    Department of Agronomy and Agricultural Extension, University of Rajshahi, Rajshahi 6205, Bangladesh
    These authors contributed equally to this work.)

  • Junbiao Zhang

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China
    These authors contributed equally to this work.)

  • Mingmei Yang

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

The crops that we grow for food need specific climatic conditions to show better performance in view of economic yield. A changing climate could have both beneficial and harmful effects on crops. Keeping the above view in mind, this study is undertaken to investigate the impacts of climate change (viz. changes in maximum temperature, minimum temperature, rainfall, humidity and sunshine) on the yield and cropping area of four major food crops (viz. Aus rice, Aman rice, Boro rice and wheat) in Bangladesh. Heteroskedasticity and autocorrelation consistent standard error (HAC) and feasible generalized least square (FGLS) methods were used to determine the climate-crop interrelations using national level time series data for the period of 1972–2010. Findings revealed that the effects of all the climate variables have had significant contributions to the yield and cropping area of major food crops with distinct variation among them. Maximum temperature statistically significantly affected all the food crops’ yield except Aus rice. Maximum temperature also insignificantly affected cropping area of all the crops. Minimum temperature insignificantly affected Aman rice but benefited other three crops’ yield and cropping area. Rainfall significantly benefitted cropping area of Aus rice, but significantly affected both yield and cropping area of Aman rice. Humidity statistically positively contributed to the yield of Aus and Aman rice but, statistically, negatively influenced the cropping area of Aus rice. Sunshine statistically significantly benefitted only Boro rice yield. Overall, maximum temperature adversely affected yield and cropping area of all the major food crops and rainfall severely affected Aman rice only. Concerning the issue of climate change and ensuring food security, the respective authorities thus should give considerable attention to the generation, development and extension of drought (all major food crops) and flood (particularly Aman rice) tolerant varieties.

Suggested Citation

  • Md. Ruhul Amin & Junbiao Zhang & Mingmei Yang, 2015. "Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:1:p:898-915:d:44695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/1/898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/1/898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    2. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    3. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    4. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    5. Temesgen Tadesse Deressa & Rashid M. Hassan, 2009. "Economic Impact of Climate Change on Crop Production in Ethiopia: Evidence from Cross-section Measures," Journal of African Economies, Centre for the Study of African Economies, vol. 18(4), pages 529-554, August.
    6. Kabubo-Mariara, Jane & Karanja, Fredrick K, 2007. "The economic impact of climate change on Kenyan crop agriculture : a ricardian approach," Policy Research Working Paper Series 4334, The World Bank.
    7. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    8. Begum, M.E.A & D'Haese, Luc, 2010. "Supply and demand situations for major crops and food items in Bangladesh," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    2. Jeonghyun Kim & Hojeong Park & Jong Ahn Chun & Sanai Li, 2018. "Adaptation Strategies under Climate Change for Sustainable Agricultural Productivity in Cambodia," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    3. Byela Tibesigwa & Martine Visser & Jane Turpie, 2017. "Climate change and South Africa’s commercial farms: an assessment of impacts on specialised horticulture, crop, livestock and mixed farming systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 607-636, April.
    4. Zeenatul Islam & Mohammad Alauddin & Md. Abdur Rashid Sarker, 2017. "Farmers’ perception on climate change-driven rice production loss in drought-prone and groundwater-depleted areas of Bangladesh: An ordered probit analysis," Discussion Papers Series 579, School of Economics, University of Queensland, Australia.
    5. M. MEHEDI HASAN & Md. ABDUR RASHID SARKER & JEFF GOW, 2016. "Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-21, August.
    6. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    7. Nath, Hiranya K. & Mandal, Raju, 2018. "Heterogeneous Climatic Impacts on Agricultural Production: Evidence from Rice Yield in Assam, India," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 15(1), June.
    8. Ochieng, Justus & Kirimi, Lilian & Mathenge, Mary, 2016. "Effects of Climate Variability and Change on Agricultural Production: The Case of Small-Scale Farmers in Kenya," Working Papers 229711, Egerton University, Tegemeo Institute of Agricultural Policy and Development.
    9. Sabrina Auci & Nicolò Barbieri & Manuela Coromaldi & Donatella Vignani, 2021. "Innovation for climate change adaptation and technical efficiency: an empirical analysis in the European agricultural sector," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 597-623, July.
    10. Raju Mandal & Hiranya Nath, 2017. "Climate Change and indian Agriculture: Impacts on Crop Yield," Working Papers 1705, Sam Houston State University, Department of Economics and International Business.
    11. Hasan, M. Mehedi & Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Jakaria, Mohammad & Alamgir, Mahiuddin, 2019. "Climate sensitivity of wheat yield in Bangladesh: Implications for the United Nations sustainable development goals 2 and 6," Land Use Policy, Elsevier, vol. 87(C).
    12. Habtemariam, Lemlem Teklegiorgis & Abate Kassa, Getachew & Gandorfer, Markus, 2017. "Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects," Agricultural Systems, Elsevier, vol. 152(C), pages 58-66.
    13. Gebreegziabher, Zenebe & Mekonnen, Alemu & Deribe, Rahel & Abera, Samuel & Kassahun, Meseret Molla, 2013. "Crop-Livestock Inter-linkages and Climate Change Implications for Ethiopia’s Agriculture: A Ricardian Approach," RFF Working Paper Series dp-13-14-efd, Resources for the Future.
    14. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    15. Yonas Alem & Mathilde Maurel & Katrin Millock, 2016. "Migration as an Adaptation Strategy to Weather Variability: An Instrumental Variables Probit Analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01955941, HAL.
    16. Gebreegziabher, Zenebe & Stage, Jesper & Mekonnen, Alemu & Alemu, Atlaw, 2011. "Climate Change and the Ethiopian Economy: A Computable General Equilibrium Analysis," RFF Working Paper Series dp-11-09-efd, Resources for the Future.
    17. Julius Kotir, 2011. "Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 587-605, June.
    18. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    19. Mandal, Raju & Singha, Pratiti, 2020. "Impact of Climate Change on Average Yields and their Variability of the Principal Crops in Assam," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 0(Number 3), September.
    20. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:1:p:898-915:d:44695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.