IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i5p2584-2600d35689.html
   My bibliography  Save this article

Carbon Emissions Abatement Cost in China: Provincial Panel Data Analysis

Author

Listed:
  • Jianjun Wang

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

  • Li Li

    (School of Economics and Management, Beijing Information Science & Technology University, Beijing 100195, China)

  • Fan Zhang

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

  • Qiannan Xu

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

Abstract

This paper employs the quadratic directional output distance function to derive shadow prices of China’s aggregate carbon emissions at the province level between 1997 and 2010. The empirical results indicate that the national weighted average shadow price presents an “N-shape” curve across the sample period, experiencing the initial phase of growth followed by a phase of deterioration, and then a further increase. This change trend implies that the cost of carbon emissions reduction is increasing. In addition, the shadow price varies significantly across provinces, which means that China should uphold the principal of “common but differentiated responsibilities” in regional carbon emissions reduction. Generally, the shadow price of the east provinces with high economic development is markedly higher than that of the west provinces with low economic development. The OLS regression results indicate that the shadow price positively connected with the regional economic development levels. Moreover, an inflection point exists in the relation curve between the shadow price and GDP per capita, that is, the increase rate of the shadow price becomes small when the GDP per capita is less than 18.1 thousand Yuan, while it becomes large when the GDP per capita surpasses 18.1 thousand Yuan. With the economic growth, the cost of carbon emissions reduction would be significantly increased. The empirical results can provide more insight for policymakers.

Suggested Citation

  • Jianjun Wang & Li Li & Fan Zhang & Qiannan Xu, 2014. "Carbon Emissions Abatement Cost in China: Provincial Panel Data Analysis," Sustainability, MDPI, vol. 6(5), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:5:p:2584-2600:d:35689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/5/2584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/5/2584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gollop, Frank M & Roberts, Mark J, 1985. "Cost-minimizing Regulation of Sulfur Emissions: Regional Gains in Electric Power," The Review of Economics and Statistics, MIT Press, vol. 67(1), pages 81-90, February.
    2. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    3. Fare, Rolf & Grosskopf, Shawna & Weber, William L., 2006. "Shadow prices and pollution costs in U.S. agriculture," Ecological Economics, Elsevier, vol. 56(1), pages 89-103, January.
    4. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    5. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    6. Kwon, Oh Sang & Yun, Won-Cheol, 1999. "Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector," Energy Economics, Elsevier, vol. 21(6), pages 545-558, December.
    7. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
    8. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    9. Zhang, Xing-Ping & Tan, Ya-Kun & Tan, Qin-Liang & Yuan, Jia-Hai, 2012. "Decomposition of aggregate CO2 emissions within a joint production framework," Energy Economics, Elsevier, vol. 34(4), pages 1088-1097.
    10. Hailu, Atakelty & Hailu, Atakelty, 2003. "Pollution abatement and productivity performance of regional Canadian pulp and paper industries," Journal of Forest Economics, Elsevier, vol. 9(1), pages 5-25.
    11. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    12. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    13. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    14. Yanrui Wu, 2004. "Openness, productivity and growth in the APEC economies," Empirical Economics, Springer, vol. 29(3), pages 593-604, September.
    15. Jukka Heinonen & Seppo Junnila, 2011. "A Carbon Consumption Comparison of Rural and Urban Lifestyles," Sustainability, MDPI, vol. 3(8), pages 1-16, August.
    16. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    2. Qunli Wu & Shuting Gu, 2021. "Exploring the focus of future CO2 emission reduction in China's industrial sectors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 682-696, August.
    3. Shiran Li & Hongbing Deng & Kangkang Zhang, 2019. "The Impact of Economy on Carbon Emissions: An Empirical Study Based on the Synergistic Effect of Gender Factors," IJERPH, MDPI, vol. 16(19), pages 1-16, October.
    4. Yu Liu & Hongwei Xiao & Ning Zhang, 2016. "Industrial Carbon Emissions of China’s Regions: A Spatial Econometric Analysis," Sustainability, MDPI, vol. 8(3), pages 1-14, February.
    5. Xiaohua Song & Xiao Jiang & Xubei Zhang & Jinpeng Liu, 2018. "Analysis, Evaluation and Optimization Strategy of China Thermal Power Enterprises’ Business Performance Considering Environmental Costs under the Background of Carbon Trading," Sustainability, MDPI, vol. 10(6), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    2. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    3. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    4. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    5. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    6. Limin Du & Aoife Hanley & Chu Wei, 2015. "Marginal Abatement Costs of Carbon Dioxide Emissions in China: A Parametric Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 191-216, June.
    7. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    8. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    9. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    10. Qunli Wu & Huaxing Lin, 2019. "Estimating Regional Shadow Prices of CO 2 in China: A Directional Environmental Production Frontier Approach," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    11. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    12. Chunbo Ma and Atakelty Hailu, 2016. "The Marginal Abatement Cost of Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    13. Shixiong Cheng & Wei Liu & Kai Lu, 2018. "Economic Growth Effect and Optimal Carbon Emissions under China’s Carbon Emissions Reduction Policy: A Time Substitution DEA Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    14. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    15. Yongrok Choi & Chao Qi, 2019. "Is South Korea’s Emission Trading Scheme Effective? An Analysis Based on the Marginal Abatement Cost of Coal-Fueled Power Plants," Sustainability, MDPI, vol. 11(9), pages 1-12, April.
    16. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
    17. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    18. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    19. Rekker, Lennard & Kesina, Michaela & Mulder, Machiel, 2023. "Carbon abatement in the European chemical industry: assessing the feasibility of abatement technologies by estimating firm-level marginal abatement costs," Energy Economics, Elsevier, vol. 126(C).
    20. Ning Zhang & Fanbin Kong & Chih-Chun Kung, 2015. "On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 389-404, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:5:p:2584-2600:d:35689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.