IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v3y2011i8p1234-1249d13587.html
   My bibliography  Save this article

A Carbon Consumption Comparison of Rural and Urban Lifestyles

Author

Listed:
  • Jukka Heinonen

    (Aalto University School of Engineering, P.O. Box 11200, 00076 AALTO, Finland)

  • Seppo Junnila

    (Aalto University School of Engineering, P.O. Box 11200, 00076 AALTO, Finland)

Abstract

Sustainable consumption has been addressed from different perspectives in numerous studies. Recently, urban structure-related lifestyle issues have gained more emphasis in the research as cities search for effective strategies to reduce their 80% share of the global carbon emissions. However, the prevailing belief often seen is that cities would be more sustainable in nature compared to surrounding suburban and rural areas. This paper will illustrate, by studying four different urban structure related lifestyles in Finland, that the situation might be reversed. Actually, substantially more carbon emissions seem to be caused on a per capita level in cities than in suburban and rural areas. This is mainly due to the higher income level in larger urban centers, but even housing-related emissions seem to favor less urbanized areas. The method of the study is a consumption-based life cycle assessment of carbon emissions. In more detail, a hybrid life cycle assessment (LCA) model, that is comprehensive in providing a full inventory and can accommodate process data, is utilized.

Suggested Citation

  • Jukka Heinonen & Seppo Junnila, 2011. "A Carbon Consumption Comparison of Rural and Urban Lifestyles," Sustainability, MDPI, vol. 3(8), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:3:y:2011:i:8:p:1234-1249:d:13587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/3/8/1234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/3/8/1234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    2. Manfred Lenzen & Lise-Lotte Pade & Jesper Munksgaard, 2004. "CO2 Multipliers in Multi-region Input-Output Models," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 391-412.
    3. Satish Joshi, 1999. "Product Environmental Life‐Cycle Assessment Using Input‐Output Techniques," Journal of Industrial Ecology, Yale University, vol. 3(2‐3), pages 95-120, April.
    4. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    5. Y. Anny Huang & Manfred Lenzen & Christopher Weber & Joy Murray & H. Scott Matthews, 2009. "The Role Of Input-Output Analysis For The Screening Of Corporate Carbon Footprints," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 217-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianjun Wang & Li Li & Fan Zhang & Qiannan Xu, 2014. "Carbon Emissions Abatement Cost in China: Provincial Panel Data Analysis," Sustainability, MDPI, vol. 6(5), pages 1-17, May.
    2. Boyce, Scott & He, Fangliang, 2022. "Political governance, socioeconomics, and weather influence provincial GHG emissions in Canada," Energy Policy, Elsevier, vol. 168(C).
    3. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    4. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    5. Cheol Hee Son & Jong In Baek & Yong Un Ban, 2018. "Structural Impact Relationships Between Urban Development Intensity Characteristics and Carbon Dioxide Emissions in Korea," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    6. Alice Whetstone & Yuliya Kalmykova & Leonardo Rosado & Alexandra Lavers Westin, 2020. "Informing Sustainable Consumption in Urban Districts: A Method for Transforming Household Expenditures into Physical Quantities," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    7. Park, Jongmun & Yun, Sun-Jin, 2022. "Social determinants of residential electricity consumption in Korea: Findings from a spatial panel model," Energy, Elsevier, vol. 239(PE).
    8. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    9. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    10. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    11. Yang, Siyuan & Chen, Bin & Wakeel, Muhammad & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "PM2.5 footprint of household energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 375-383.
    12. Sirous Ghanbari & Mohammad Reza Mansouri Daneshvar, 2021. "Urban and rural contribution to the GHG emissions in the MECA countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6418-6452, April.
    13. Peng Du & Antony Wood & Brent Stephens, 2016. "Empirical Operational Energy Analysis of Downtown High-Rise vs. Suburban Low-Rise Lifestyles: A Chicago Case Study," Energies, MDPI, vol. 9(6), pages 1-27, June.
    14. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    15. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    16. Eeva-Sofia Säynäjoki & Jukka Heinonen & Seppo Junnila, 2014. "The Power of Urban Planning on Environmental Sustainability: A Focus Group Study in Finland," Sustainability, MDPI, vol. 6(10), pages 1-22, September.
    17. Jani Laine & Juudit Ottelin & Jukka Heinonen & Seppo Junnila, 2017. "Consequential Implications of Municipal Energy System on City Carbon Footprints," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    18. Jia Wei & Hong Chen & Ruyin Long, 2018. "Diffusion Paths and Guiding Policy for Urban Residents’ Carbon Identification Capability: Simulation Analysis from the Perspective of Relation Strength and Personal Carbon Trading," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    19. Alexandra Lavers Westin & Leonardo Rosado & Yuliya Kalmykova & João Patrício, 2020. "Methods for Downscaling National Material Consumption Data to the Regional and Municipal Levels," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    20. Riikka Kyrö & Jukka Heinonen & Antti Säynäjoki & Seppo Junnila, 2012. "Assessing the Potential of Climate Change Mitigation Actions in Three Different City Types in Finland," Sustainability, MDPI, vol. 4(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    2. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    3. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    4. Hermannsson, Kristinn & McIntyre, Stuart G., 2014. "Local consumption and territorial based accounting for CO2 emissions," Ecological Economics, Elsevier, vol. 104(C), pages 1-11.
    5. Pu Lyu & Yongjie Lin & Yuanqing Wang, 2019. "The impacts of household features on commuting carbon emissions: a case study of Xi’an, China," Transportation, Springer, vol. 46(3), pages 841-857, June.
    6. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    7. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    8. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    9. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    10. Niu, Honglei & Lekse, William, 2018. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-31.
    11. Kramers, Anna & Wangel, Josefin & Johansson, Stefan & Höjer, Mattias & Finnveden, Göran & Brandt, Nils, 2013. "Towards a comprehensive system of methodological considerations for cities' climate targets," Energy Policy, Elsevier, vol. 62(C), pages 1276-1287.
    12. Llop, Maria & Ponce-Alifonso, Xavier, 2015. "Identifying the role of final consumption in structural path analysis: An application to water uses," Ecological Economics, Elsevier, vol. 109(C), pages 203-210.
    13. Jukka Heinonen & Antti Säynäjoki & Seppo Junnila, 2011. "A Longitudinal Study on the Carbon Emissions of a New Residential Development," Sustainability, MDPI, vol. 3(8), pages 1-20, August.
    14. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    15. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    16. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
    17. Jing Tian & Hua Liao & Ce Wang, 2015. "Spatial–temporal variations of embodied carbon emission in global trade flows: 41 economies and 35 sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1125-1144, September.
    18. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    19. Chavez, Abel & Ramaswami, Anu, 2013. "Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance," Energy Policy, Elsevier, vol. 54(C), pages 376-384.
    20. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:3:y:2011:i:8:p:1234-1249:d:13587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.