IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i4p2357-2378d35437.html
   My bibliography  Save this article

Development of Web-Based RECESS Model for Estimating Baseflow Using SWAT

Author

Listed:
  • Gwanjae Lee

    (Department of Regional Infrastructure Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Kangwon-do 200-701, Korea
    These authors contributed equally to this work.)

  • Yongchul Shin

    (Department of Biological and Agricultural Engineering, Texas A & M University, College Station, TX 77843-2117, USA
    These authors contributed equally to this work.)

  • Younghun Jung

    (Department of Regional Infrastructure Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Kangwon-do 200-701, Korea
    These authors contributed equally to this work.)

Abstract

Groundwater has received increasing attention as an important strategic water resource for adaptation to climate change. In this regard, the separation of baseflow from streamflow and the analysis of recession curves make a significant contribution to integrated river basin management. The United States Geological Survey (USGS) RECESS model adopting the master-recession curve (MRC) method can enhance the accuracy with which baseflow may be separated from streamflow, compared to other baseflow-separation schemes that are more limited in their ability to reflect various watershed/aquifer characteristics. The RECESS model has been widely used for the analysis of hydrographs, but the applications using RECESS were only available through Microsoft-Disk Operating System (MS-DOS). Thus, this study aims to develop a web-based RECESS model for easy separation of baseflow from streamflow, with easy applications for ungauged regions. RECESS on the web derived the alpha factor, which is a baseflow recession constant in the Soil Water Assessment Tool (SWAT), and this variable was provided to SWAT as the input. The results showed that the alpha factor estimated from the web-based RECESS model improved the predictions of streamflow and recession. Furthermore, these findings showed that the baseflow characteristics of the ungauged watersheds were influenced by the land use and slope angle of watersheds, as well as by precipitation and streamflow.

Suggested Citation

  • Gwanjae Lee & Yongchul Shin & Younghun Jung, 2014. "Development of Web-Based RECESS Model for Estimating Baseflow Using SWAT," Sustainability, MDPI, vol. 6(4), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:4:p:2357-2378:d:35437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/4/2357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/4/2357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas F. Stocker & Christoph C. Raible, 2005. "Water cycle shifts gear," Nature, Nature, vol. 434(7035), pages 830-833, April.
    2. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiezhu Yan & Jianwen Bai & Amelia LEE ZHI YI & Zhenyao Shen, 2018. "SWAT-Simulated Streamflow Responses to Climate Variability and Human Activities in the Miyun Reservoir Basin by Considering Streamflow Components," Sustainability, MDPI, vol. 10(4), pages 1-21, March.
    2. Ying Zhang & Ling Zhang & Jinliang Hou & Juan Gu & Chunlin Huang, 2017. "Development of an Evapotranspiration Data Assimilation Technique for Streamflow Estimates: A Case Study in a Semi-Arid Region," Sustainability, MDPI, vol. 9(10), pages 1-21, September.
    3. Wonjin Kim & Seongjoon Kim & Jinuk Kim & Jiwan Lee & Soyoung Woo & Sehoon Kim, 2022. "Assessment of Long-term Groundwater Use Increase and Forest Growth Impact on Watershed Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5801-5821, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    4. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    5. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    6. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    7. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    8. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Yanxue Liu & Changlu Qiao, 2023. "Partitioning Evapotranspiration in a Cotton Field under Mulched Drip Irrigation Based on the Water-Carbon Fluxes Coupling in an Arid Region in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-16, June.
    11. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    12. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    13. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    14. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    15. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    16. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    17. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    18. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.
    19. Cao, Meng & Chen, Min & Liu, Ji & Liu, Yanli, 2022. "Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:4:p:2357-2378:d:35437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.