IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i9p3876-3894d28752.html
   My bibliography  Save this article

Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management

Author

Listed:
  • Sabine Zikeli

    (Institute of Crop Science, Coordination for Organic Farming and Consumer Protection (340d), University of Hohenheim, Stuttgart 70593, Germany)

  • Sabine Gruber

    (Institute of Crop Science, Agronomy (340a), University of Hohenheim, Stuttgart 70593, Germany
    These authors contributed equally to this work.)

  • Claus-Felix Teufel

    (Claus-Felix Teufel, Landratsamt Konstanz, Amt für Landwirtschaft Stockach, Winterspürer-Str. 25, Stockach 78333, Germany
    These authors contributed equally to this work.)

  • Karin Hartung

    (Institute of Crop Science, Bioinformatics (340c), University of Hohenheim, Stuttgart 70593, Germany
    These authors contributed equally to this work.)

  • Wilhelm Claupein

    (Institute of Crop Science, Agronomy (340a), University of Hohenheim, Stuttgart 70593, Germany
    These authors contributed equally to this work.)

Abstract

A field experiment was performed in Southwest Germany to examine the effects of long-term reduced tillage (2000–2012). Tillage treatments were deep moldboard plow: DP, 25 cm; double-layer plow; DLP, 15 + 10 cm, shallow moldboard plow: SP, 15 cm and chisel plow: CP, 15 cm, each of them with or without preceding stubble tillage. The mean yields of a typical eight-year crop rotation were 22% lower with CP compared to DP, and 3% lower with SP and DLP. Stubble tillage increased yields by 11% across all treatments. Soil nutrients were high with all tillage strategies and amounted for 34–57 mg kg −1 P and 48–113 mg kg −1 K (0–60 cm soil depth). Humus budgets showed a high carbon input via crops but this was not reflected in the actual C org content of the soil. C org decreased as soil depth increased from 13.7 g kg −1 (0–20 cm) to 4.3 g kg −1 (40–60 cm) across all treatments. After 12 years of experiment, SP and CP resulted in significantly higher C org content in 0–20 cm soil depth, compared to DP and DLP. Stubble tillage had no significant effect on C org . Stubble tillage combined with reduced primary tillage can sustain yield levels without compromising beneficial effects from reduced tillage on C org and available nutrient content.

Suggested Citation

  • Sabine Zikeli & Sabine Gruber & Claus-Felix Teufel & Karin Hartung & Wilhelm Claupein, 2013. "Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management," Sustainability, MDPI, vol. 5(9), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:9:p:3876-3894:d:28752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/9/3876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/9/3876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    2. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(Supplemen), pages 33-39, January.
    3. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usman Zulfiqar & Saddam Hussain & Muhammad Ishfaq & Nauman Ali & Muhammad Ahmad & Fahid Ihsan & Mohamed S. Sheteiwy & Abdur Rauf & Christophe Hano & Mohamed A. El-Esawi, 2021. "Manganese Supply Improves Bread Wheat Productivity, Economic Returns and Grain Biofortification under Conventional and No Tillage Systems," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    2. Jonas F. Weber & Christoph Kunz & Gerassimos G. Peteinatos & Sabine Zikeli & Roland Gerhards, 2017. "Weed Control Using Conventional Tillage, Reduced Tillage, No-Tillage, and Cover Crops in Organic Soybean," Agriculture, MDPI, vol. 7(5), pages 1-13, May.
    3. Andrzej Woźniak & Leszek Rachoń, 2020. "Effect of Tillage Systems on the Yield and Quality of Winter Wheat Grain and Soil Properties," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
    4. Sabine Zikeli & Sabine Gruber, 2017. "Reduced Tillage and No-Till in Organic Farming Systems, Germany—Status Quo, Potentials and Challenges," Agriculture, MDPI, vol. 7(4), pages 1-17, April.
    5. Pranagal, Jacek & Woźniak, Andrzej, 2021. "30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    2. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    3. repec:bla:afrdev:v:29:y:2017:i:s2:p:163-178 is not listed on IDEAS
    4. Li, Guochun & Niu, Wenquan & Ma, Li & Du, Yadan & Zhang, Qian & Gan, Haicheng & Siddique, Kadambot H.M., 2024. "Effects of drip irrigation upper limits on rhizosphere soil bacterial communities, soil organic carbon, and wheat yield," Agricultural Water Management, Elsevier, vol. 293(C).
    5. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    6. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs in Africa: An Assessment of Recent Evidence," Food Security International Development Working Papers 245892, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    7. Nath, Arun Jyoti & Lal, Rattan, 2017. "Managing tropical wetlands for advancing global rice production: Implications for land-use management," Land Use Policy, Elsevier, vol. 68(C), pages 681-685.
    8. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    9. Tran, Dat Q. & Kurkalova, Lyubov A., 2017. "Testing for complementarity between the use of continuous no-till and cover crops: an application of Entropy approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259149, Agricultural and Applied Economics Association.
    10. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.
    11. Lybbert, Travis J. & Sumner, Daniel A., 2012. "Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion," Food Policy, Elsevier, vol. 37(1), pages 114-123.
    12. Dorota Wichrowska & Małgorzata Szczepanek, 2020. "Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-fertilizer and Its Influence on Protein Content in Potato Tubers," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    13. Jayne, Thomas S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2018. "Review: Taking stock of Africa’s second-generation agricultural input subsidy programs," Food Policy, Elsevier, vol. 75(C), pages 1-14.
    14. Mohamed E. A. El-sayed & Mohamed Hazman & Ayman Gamal Abd El-Rady & Lal Almas & Mike McFarland & Ali Shams El Din & Steve Burian, 2021. "Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    15. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Getnet, Kindie & Mekuria, Wolde & Langan, Simon & Rivington, Mike & Novo, Paula & Black, Helaina, 2017. "Ecosystem-based interventions and farm household welfare in degraded areas: Comparative evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 154(C), pages 53-62.
    17. Bethwell, Claudia & Sattler, Claudia & Stachow, Ulrich, 2022. "An analytical framework to link governance, agricultural production practices, and the provision of ecosystem services in agricultural landscapes," Ecosystem Services, Elsevier, vol. 53(C).
    18. Yosefin Ari Silvianingsih & Kurniatun Hairiah & Didik Suprayogo & Meine van Noordwijk, 2021. "Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability," Land, MDPI, vol. 10(8), pages 1-20, August.
    19. Anna A. Romanovskaya & Vladimir N. Korotkov & Polina D. Polumieva & Alexander A. Trunov & Victoria Yu. Vertyankina & Rodion T. Karaban, 2020. "Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 661-687, April.
    20. Jianzheng Li & Zhongkui Luo & Yingchun Wang & Hu Li & Hongtao Xing & Ligang Wang & Enli Wang & Hui Xu & Chunyu Gao & Tianzhi Ren, 2019. "Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Maintaining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    21. Chennault, Carrie M. & Valek, Robert M. & Tyndall, John C. & Schulte, Lisa A., 2020. "PEWI: An interactive web-based ecosystem service model for a broad public audience," Ecological Modelling, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:9:p:3876-3894:d:28752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.