IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v7y2017i5p43-d97516.html
   My bibliography  Save this article

Weed Control Using Conventional Tillage, Reduced Tillage, No-Tillage, and Cover Crops in Organic Soybean

Author

Listed:
  • Jonas F. Weber

    (Institute of Phytomedicine, Department of Weed Science, University of Hohenheim, 70599 Stuttgart, Germany)

  • Christoph Kunz

    (Institute of Phytomedicine, Department of Weed Science, University of Hohenheim, 70599 Stuttgart, Germany)

  • Gerassimos G. Peteinatos

    (Institute of Phytomedicine, Department of Weed Science, University of Hohenheim, 70599 Stuttgart, Germany)

  • Sabine Zikeli

    (Institute of Crop Science, Coordination for Organic Farming and Consumer Protection, University of Hohenheim, 70599 Stuttgart, Germany)

  • Roland Gerhards

    (Institute of Phytomedicine, Department of Weed Science, University of Hohenheim, 70599 Stuttgart, Germany)

Abstract

Soybean field experiments were performed to investigate the weed-suppressing effects of different tillage systems and cover crop mulches at two locations in southwest Germany during 2014 and 2015. The influence of three different tillage systems on weed control efficacy, soybean plant density, and crop yield was determined. In the no-till system (NT), two different cover crops, (rye and barley), were treated by a roller-crimper before soybean sowing. For the reduced tillage system (RT), shallow soil cultivation (7.5 cm depth) using a cultivator after cover crop harvest was performed. The third system was conventional tillage (CT), which used a plow (25 cm depth) without any previous cover crop treatment. Finally, a CT system without weed control was used as a control treatment (C). Weed densities in the field experiments ranged from 1 to 164 plants m −2 with Chenopodium album (L.), Echinochloa crus-galli (L.) P. Beauv., and Sonchus arvensis (L.) as the predominant weed species. No difference in weed suppression was found between the two cover crops. The highest cover crop soil coverage was measured in the NT treatment. The greatest weed density (164 plants m −2 ) was measured in the untreated control. CT, RT and NT reduced weed density up to 71%, 85%, and 61%, respectively, to C, across both locations and years. Soybean plant density was reduced in NT (−36%) and CT (−18%) based on aimed sown plant density. Highest crop yields up to 2.4 t ha −1 were observed in RT, while NT resulted in lower yields (1.1 t ha −1 ). Our work reveals the importance of cover crops for weed suppression in soybean cropping systems without herbicide application.

Suggested Citation

  • Jonas F. Weber & Christoph Kunz & Gerassimos G. Peteinatos & Sabine Zikeli & Roland Gerhards, 2017. "Weed Control Using Conventional Tillage, Reduced Tillage, No-Tillage, and Cover Crops in Organic Soybean," Agriculture, MDPI, vol. 7(5), pages 1-13, May.
  • Handle: RePEc:gam:jagris:v:7:y:2017:i:5:p:43-:d:97516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/7/5/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/7/5/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sabine Zikeli & Sabine Gruber & Claus-Felix Teufel & Karin Hartung & Wilhelm Claupein, 2013. "Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management," Sustainability, MDPI, vol. 5(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gourav Sharma & Swati Shrestha & Sudip Kunwar & Te-Ming Tseng, 2021. "Crop Diversification for Improved Weed Management: A Review," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    2. Tshering Choden & Bhim Bahadur Ghaley, 2021. "A Portfolio of Effective Water and Soil Conservation Practices for Arable Production Systems in Europe and North Africa," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    3. Heather M. Beach & Ken W. Laing & Morris Van De Walle & Ralph C. Martin, 2018. "The Current State and Future Directions of Organic No-Till Farming with Cover Crops in Canada, with Case Study Support," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    4. Felicia Cheţan & Teodor Rusu & Cornel Cheţan & Camelia Urdă & Raluca Rezi & Alina Şimon & Ileana Bogdan, 2022. "Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop," Land, MDPI, vol. 11(10), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabine Zikeli & Sabine Gruber, 2017. "Reduced Tillage and No-Till in Organic Farming Systems, Germany—Status Quo, Potentials and Challenges," Agriculture, MDPI, vol. 7(4), pages 1-17, April.
    2. Andrzej Woźniak & Leszek Rachoń, 2020. "Effect of Tillage Systems on the Yield and Quality of Winter Wheat Grain and Soil Properties," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
    3. Pranagal, Jacek & Woźniak, Andrzej, 2021. "30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Usman Zulfiqar & Saddam Hussain & Muhammad Ishfaq & Nauman Ali & Muhammad Ahmad & Fahid Ihsan & Mohamed S. Sheteiwy & Abdur Rauf & Christophe Hano & Mohamed A. El-Esawi, 2021. "Manganese Supply Improves Bread Wheat Productivity, Economic Returns and Grain Biofortification under Conventional and No Tillage Systems," Agriculture, MDPI, vol. 11(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:7:y:2017:i:5:p:43-:d:97516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.