IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v68y2017icp681-685.html
   My bibliography  Save this article

Managing tropical wetlands for advancing global rice production: Implications for land-use management

Author

Listed:
  • Nath, Arun Jyoti
  • Lal, Rattan

Abstract

Being fertile lands, wetlands have been managed for traditional agriculture over millennia. However, the integrity and ecosystem services of wetlands are being jeopardized by intensive land-use comprising of drainage and excessive disturbance. An adhoc and intensive use of wetlands, without preserving ecological integrity is causing ecosystem disservices and threatening conversion of a large soil organic carbon (SOC) sink into a net source. Wetlands in the tropical parts of the world are distributed unevenly and represent ∼3% of the total world land area. Due to stagnancy and even reduction in rice (Oryza sativa) yield of many agricultural regions, there is a need for additional and alternative land-uses which can raise the global rice production to ∼1 billion Mg (megagram=106g=metric ton) by 2050 from ∼497 million Mg now. Wetlands can be a viable option to advance global food security because of high soil fertility and vast geographical distribution. A ‘3-tier rice production system’ is proposed herein based on specific hydrological niche to advance global food security without degrading the ecosystem services of wetlands. In addition to increasing agronomic yield, the proposed modus operandi can also improve the livelihood security of farmers through an additional income streams by: (i) trading of SOC credits generated through adoption of conservation agriculture in littoral zones, and (ii) promoting fish and duckery culture in conjunction with deepwater rice farming. Furthermore, the proposed strategies will also set in motion the process of restoration of wetlands while enhancing C sink capacity of the ecosystems.

Suggested Citation

  • Nath, Arun Jyoti & Lal, Rattan, 2017. "Managing tropical wetlands for advancing global rice production: Implications for land-use management," Land Use Policy, Elsevier, vol. 68(C), pages 681-685.
  • Handle: RePEc:eee:lauspo:v:68:y:2017:i:c:p:681-685
    DOI: 10.1016/j.landusepol.2017.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837716305130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2017.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(Supplemen), pages 33-39, January.
    2. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    2. repec:bla:afrdev:v:29:y:2017:i:s2:p:163-178 is not listed on IDEAS
    3. Li, Guochun & Niu, Wenquan & Ma, Li & Du, Yadan & Zhang, Qian & Gan, Haicheng & Siddique, Kadambot H.M., 2024. "Effects of drip irrigation upper limits on rhizosphere soil bacterial communities, soil organic carbon, and wheat yield," Agricultural Water Management, Elsevier, vol. 293(C).
    4. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    5. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs In Africa: An Assessment Of Recent Evidence," Feed the Future Innovation Lab for Food Security Policy Research Papers 259509, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    6. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    7. Tran, Dat Q. & Kurkalova, Lyubov A., 2017. "Testing for complementarity between the use of continuous no-till and cover crops: an application of Entropy approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259149, Agricultural and Applied Economics Association.
    8. Dorota Wichrowska & Małgorzata Szczepanek, 2020. "Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-fertilizer and Its Influence on Protein Content in Potato Tubers," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    9. Mohamed E. A. El-sayed & Mohamed Hazman & Ayman Gamal Abd El-Rady & Lal Almas & Mike McFarland & Ali Shams El Din & Steve Burian, 2021. "Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    10. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Getnet, Kindie & Mekuria, Wolde & Langan, Simon & Rivington, Mike & Novo, Paula & Black, Helaina, 2017. "Ecosystem-based interventions and farm household welfare in degraded areas: Comparative evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 154(C), pages 53-62.
    12. Yosefin Ari Silvianingsih & Kurniatun Hairiah & Didik Suprayogo & Meine van Noordwijk, 2021. "Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability," Land, MDPI, vol. 10(8), pages 1-20, August.
    13. Anna A. Romanovskaya & Vladimir N. Korotkov & Polina D. Polumieva & Alexander A. Trunov & Victoria Yu. Vertyankina & Rodion T. Karaban, 2020. "Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 661-687, April.
    14. Jianzheng Li & Zhongkui Luo & Yingchun Wang & Hu Li & Hongtao Xing & Ligang Wang & Enli Wang & Hui Xu & Chunyu Gao & Tianzhi Ren, 2019. "Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Maintaining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    15. Sabine Zikeli & Sabine Gruber & Claus-Felix Teufel & Karin Hartung & Wilhelm Claupein, 2013. "Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management," Sustainability, MDPI, vol. 5(9), pages 1-19, September.
    16. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    17. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.
    18. Lybbert, Travis J. & Sumner, Daniel A., 2012. "Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion," Food Policy, Elsevier, vol. 37(1), pages 114-123.
    19. Jayne, Thomas S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2018. "Review: Taking stock of Africa’s second-generation agricultural input subsidy programs," Food Policy, Elsevier, vol. 75(C), pages 1-14.
    20. Bethwell, Claudia & Sattler, Claudia & Stachow, Ulrich, 2022. "An analytical framework to link governance, agricultural production practices, and the provision of ecosystem services in agricultural landscapes," Ecosystem Services, Elsevier, vol. 53(C).
    21. Chennault, Carrie M. & Valek, Robert M. & Tyndall, John C. & Schulte, Lisa A., 2020. "PEWI: An interactive web-based ecosystem service model for a broad public audience," Ecological Modelling, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:68:y:2017:i:c:p:681-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.